mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-30 18:42:26 -05:00 
			
		
		
		
	
		
			
	
	
		
			249 lines
		
	
	
	
		
			5.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
		
		
			
		
	
	
			249 lines
		
	
	
	
		
			5.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
|  | // Copyright (c) 2016 The mathutil Authors. All rights reserved. | ||
|  | // Use of this source code is governed by a BSD-style | ||
|  | // license that can be found in the LICENSE file. | ||
|  | 
 | ||
|  | package mathutil // import "modernc.org/mathutil" | ||
|  | 
 | ||
|  | import ( | ||
|  | 	"fmt" | ||
|  | 	"math/big" | ||
|  | ) | ||
|  | 
 | ||
|  | func abs(n int) uint64 { | ||
|  | 	if n >= 0 { | ||
|  | 		return uint64(n) | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return uint64(-n) | ||
|  | } | ||
|  | 
 | ||
|  | // QuadPolyDiscriminant returns the discriminant of a quadratic polynomial in | ||
|  | // one variable of the form a*x^2+b*x+c with integer coefficients a, b, c, or | ||
|  | // an error on overflow. | ||
|  | // | ||
|  | // ds is the square of the discriminant. If |ds| is a square number, d is set | ||
|  | // to sqrt(|ds|), otherwise d is < 0. | ||
|  | func QuadPolyDiscriminant(a, b, c int) (ds, d int, _ error) { | ||
|  | 	if 2*BitLenUint64(abs(b)) > IntBits-1 || | ||
|  | 		2+BitLenUint64(abs(a))+BitLenUint64(abs(c)) > IntBits-1 { | ||
|  | 		return 0, 0, fmt.Errorf("overflow") | ||
|  | 	} | ||
|  | 
 | ||
|  | 	ds = b*b - 4*a*c | ||
|  | 	s := ds | ||
|  | 	if s < 0 { | ||
|  | 		s = -s | ||
|  | 	} | ||
|  | 	d64 := SqrtUint64(uint64(s)) | ||
|  | 	if d64*d64 != uint64(s) { | ||
|  | 		return ds, -1, nil | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return ds, int(d64), nil | ||
|  | } | ||
|  | 
 | ||
|  | // PolyFactor describes an irreducible factor of a polynomial in one variable | ||
|  | // with integer coefficients P, Q of the form P*x+Q. | ||
|  | type PolyFactor struct { | ||
|  | 	P, Q int | ||
|  | } | ||
|  | 
 | ||
|  | // QuadPolyFactors returns the content and the irreducible factors of the | ||
|  | // primitive part of a quadratic polynomial in one variable with integer | ||
|  | // coefficients a, b, c of the form a*x^2+b*x+c in integers, or an error on | ||
|  | // overflow. | ||
|  | // | ||
|  | // If the factorization in integers does not exists, the return value is (0, | ||
|  | // nil, nil). | ||
|  | // | ||
|  | // See also: | ||
|  | // https://en.wikipedia.org/wiki/Factorization_of_polynomials#Primitive_part.E2.80.93content_factorization | ||
|  | func QuadPolyFactors(a, b, c int) (content int, primitivePart []PolyFactor, _ error) { | ||
|  | 	content = int(GCDUint64(abs(a), GCDUint64(abs(b), abs(c)))) | ||
|  | 	switch { | ||
|  | 	case content == 0: | ||
|  | 		content = 1 | ||
|  | 	case content > 0: | ||
|  | 		if a < 0 || a == 0 && b < 0 { | ||
|  | 			content = -content | ||
|  | 		} | ||
|  | 	} | ||
|  | 	a /= content | ||
|  | 	b /= content | ||
|  | 	c /= content | ||
|  | 	if a == 0 { | ||
|  | 		if b == 0 { | ||
|  | 			return content, []PolyFactor{{0, c}}, nil | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if b < 0 && c < 0 { | ||
|  | 			b = -b | ||
|  | 			c = -c | ||
|  | 		} | ||
|  | 		if b < 0 { | ||
|  | 			b = -b | ||
|  | 			c = -c | ||
|  | 		} | ||
|  | 		return content, []PolyFactor{{b, c}}, nil | ||
|  | 	} | ||
|  | 
 | ||
|  | 	ds, d, err := QuadPolyDiscriminant(a, b, c) | ||
|  | 	if err != nil { | ||
|  | 		return 0, nil, err | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if ds < 0 || d < 0 { | ||
|  | 		return 0, nil, nil | ||
|  | 	} | ||
|  | 
 | ||
|  | 	x1num := -b + d | ||
|  | 	x1denom := 2 * a | ||
|  | 	gcd := int(GCDUint64(abs(x1num), abs(x1denom))) | ||
|  | 	x1num /= gcd | ||
|  | 	x1denom /= gcd | ||
|  | 
 | ||
|  | 	x2num := -b - d | ||
|  | 	x2denom := 2 * a | ||
|  | 	gcd = int(GCDUint64(abs(x2num), abs(x2denom))) | ||
|  | 	x2num /= gcd | ||
|  | 	x2denom /= gcd | ||
|  | 
 | ||
|  | 	return content, []PolyFactor{{x1denom, -x1num}, {x2denom, -x2num}}, nil | ||
|  | } | ||
|  | 
 | ||
|  | // QuadPolyDiscriminantBig returns the discriminant of a quadratic polynomial | ||
|  | // in one variable of the form a*x^2+b*x+c with integer coefficients a, b, c. | ||
|  | // | ||
|  | // ds is the square of the discriminant. If |ds| is a square number, d is set | ||
|  | // to sqrt(|ds|), otherwise d is nil. | ||
|  | func QuadPolyDiscriminantBig(a, b, c *big.Int) (ds, d *big.Int) { | ||
|  | 	ds = big.NewInt(0).Set(b) | ||
|  | 	ds.Mul(ds, b) | ||
|  | 	x := big.NewInt(4) | ||
|  | 	x.Mul(x, a) | ||
|  | 	x.Mul(x, c) | ||
|  | 	ds.Sub(ds, x) | ||
|  | 
 | ||
|  | 	s := big.NewInt(0).Set(ds) | ||
|  | 	if s.Sign() < 0 { | ||
|  | 		s.Neg(s) | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if s.Bit(1) != 0 { // s is not a square number | ||
|  | 		return ds, nil | ||
|  | 	} | ||
|  | 
 | ||
|  | 	d = SqrtBig(s) | ||
|  | 	x.Set(d) | ||
|  | 	x.Mul(x, x) | ||
|  | 	if x.Cmp(s) != 0 { // s is not a square number | ||
|  | 		d = nil | ||
|  | 	} | ||
|  | 	return ds, d | ||
|  | } | ||
|  | 
 | ||
|  | // PolyFactorBig describes an irreducible factor of a polynomial in one | ||
|  | // variable with integer coefficients P, Q of the form P*x+Q. | ||
|  | type PolyFactorBig struct { | ||
|  | 	P, Q *big.Int | ||
|  | } | ||
|  | 
 | ||
|  | // QuadPolyFactorsBig returns the content and the irreducible factors of the | ||
|  | // primitive part of a quadratic polynomial in one variable with integer | ||
|  | // coefficients a, b, c of the form a*x^2+b*x+c in integers. | ||
|  | // | ||
|  | // If the factorization in integers does not exists, the return value is (nil, | ||
|  | // nil). | ||
|  | // | ||
|  | // See also: | ||
|  | // https://en.wikipedia.org/wiki/Factorization_of_polynomials#Primitive_part.E2.80.93content_factorization | ||
|  | func QuadPolyFactorsBig(a, b, c *big.Int) (content *big.Int, primitivePart []PolyFactorBig) { | ||
|  | 	content = bigGCD(bigAbs(a), bigGCD(bigAbs(b), bigAbs(c))) | ||
|  | 	switch { | ||
|  | 	case content.Sign() == 0: | ||
|  | 		content.SetInt64(1) | ||
|  | 	case content.Sign() > 0: | ||
|  | 		if a.Sign() < 0 || a.Sign() == 0 && b.Sign() < 0 { | ||
|  | 			content = bigNeg(content) | ||
|  | 		} | ||
|  | 	} | ||
|  | 	a = bigDiv(a, content) | ||
|  | 	b = bigDiv(b, content) | ||
|  | 	c = bigDiv(c, content) | ||
|  | 
 | ||
|  | 	if a.Sign() == 0 { | ||
|  | 		if b.Sign() == 0 { | ||
|  | 			return content, []PolyFactorBig{{big.NewInt(0), c}} | ||
|  | 		} | ||
|  | 
 | ||
|  | 		if b.Sign() < 0 && c.Sign() < 0 { | ||
|  | 			b = bigNeg(b) | ||
|  | 			c = bigNeg(c) | ||
|  | 		} | ||
|  | 		if b.Sign() < 0 { | ||
|  | 			b = bigNeg(b) | ||
|  | 			c = bigNeg(c) | ||
|  | 		} | ||
|  | 		return content, []PolyFactorBig{{b, c}} | ||
|  | 	} | ||
|  | 
 | ||
|  | 	ds, d := QuadPolyDiscriminantBig(a, b, c) | ||
|  | 	if ds.Sign() < 0 || d == nil { | ||
|  | 		return nil, nil | ||
|  | 	} | ||
|  | 
 | ||
|  | 	x1num := bigAdd(bigNeg(b), d) | ||
|  | 	x1denom := bigMul(_2, a) | ||
|  | 	gcd := bigGCD(bigAbs(x1num), bigAbs(x1denom)) | ||
|  | 	x1num = bigDiv(x1num, gcd) | ||
|  | 	x1denom = bigDiv(x1denom, gcd) | ||
|  | 
 | ||
|  | 	x2num := bigAdd(bigNeg(b), bigNeg(d)) | ||
|  | 	x2denom := bigMul(_2, a) | ||
|  | 	gcd = bigGCD(bigAbs(x2num), bigAbs(x2denom)) | ||
|  | 	x2num = bigDiv(x2num, gcd) | ||
|  | 	x2denom = bigDiv(x2denom, gcd) | ||
|  | 
 | ||
|  | 	return content, []PolyFactorBig{{x1denom, bigNeg(x1num)}, {x2denom, bigNeg(x2num)}} | ||
|  | } | ||
|  | 
 | ||
|  | func bigAbs(n *big.Int) *big.Int { | ||
|  | 	n = big.NewInt(0).Set(n) | ||
|  | 	if n.Sign() >= 0 { | ||
|  | 		return n | ||
|  | 	} | ||
|  | 
 | ||
|  | 	return n.Neg(n) | ||
|  | } | ||
|  | 
 | ||
|  | func bigDiv(a, b *big.Int) *big.Int { | ||
|  | 	a = big.NewInt(0).Set(a) | ||
|  | 	return a.Div(a, b) | ||
|  | } | ||
|  | 
 | ||
|  | func bigGCD(a, b *big.Int) *big.Int { | ||
|  | 	a = big.NewInt(0).Set(a) | ||
|  | 	b = big.NewInt(0).Set(b) | ||
|  | 	for b.Sign() != 0 { | ||
|  | 		c := big.NewInt(0) | ||
|  | 		c.Mod(a, b) | ||
|  | 		a, b = b, c | ||
|  | 	} | ||
|  | 	return a | ||
|  | } | ||
|  | 
 | ||
|  | func bigNeg(n *big.Int) *big.Int { | ||
|  | 	n = big.NewInt(0).Set(n) | ||
|  | 	return n.Neg(n) | ||
|  | } | ||
|  | 
 | ||
|  | func bigMul(a, b *big.Int) *big.Int { | ||
|  | 	r := big.NewInt(0).Set(a) | ||
|  | 	return r.Mul(r, b) | ||
|  | } | ||
|  | 
 | ||
|  | func bigAdd(a, b *big.Int) *big.Int { | ||
|  | 	r := big.NewInt(0).Set(a) | ||
|  | 	return r.Add(r, b) | ||
|  | } |