mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-30 22:32:25 -05:00 
			
		
		
		
	
		
			
	
	
		
			81 lines
		
	
	
	
		
			1.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
		
		
			
		
	
	
			81 lines
		
	
	
	
		
			1.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
|  | // Copyright (c) 2016 The mathutil Authors. All rights reserved. | ||
|  | // Use of this source code is governed by a BSD-style | ||
|  | // license that can be found in the LICENSE file. | ||
|  | 
 | ||
|  | package mathutil // import "modernc.org/mathutil" | ||
|  | 
 | ||
|  | import ( | ||
|  | 	"math/big" | ||
|  | ) | ||
|  | 
 | ||
|  | type float struct { | ||
|  | 	n           *big.Int | ||
|  | 	fracBits    int | ||
|  | 	maxFracBits int | ||
|  | } | ||
|  | 
 | ||
|  | func newFloat(n *big.Int, fracBits, maxFracBits int) float { | ||
|  | 	f := float{n: n, fracBits: fracBits, maxFracBits: maxFracBits} | ||
|  | 	f.normalize() | ||
|  | 	return f | ||
|  | } | ||
|  | 
 | ||
|  | func (f *float) normalize() { | ||
|  | 	n := f.n.BitLen() | ||
|  | 	if n == 0 { | ||
|  | 		return | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if n := f.fracBits - f.maxFracBits; n > 0 { | ||
|  | 		bit := f.n.Bit(n - 1) | ||
|  | 		f.n.Rsh(f.n, uint(n)) | ||
|  | 		if bit != 0 { | ||
|  | 			f.n.Add(f.n, _1) | ||
|  | 		} | ||
|  | 		f.fracBits -= n | ||
|  | 	} | ||
|  | 
 | ||
|  | 	var i int | ||
|  | 	for ; f.fracBits > 0 && i <= f.fracBits && f.n.Bit(i) == 0; i++ { | ||
|  | 		f.fracBits-- | ||
|  | 	} | ||
|  | 
 | ||
|  | 	if i != 0 { | ||
|  | 		f.n.Rsh(f.n, uint(i)) | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | func (f *float) eq1() bool { return f.fracBits == 0 && f.n.BitLen() == 1 } | ||
|  | func (f *float) ge2() bool { return f.n.BitLen() > f.fracBits+1 } | ||
|  | 
 | ||
|  | func (f *float) div2() { | ||
|  | 	f.fracBits++ | ||
|  | 	f.normalize() | ||
|  | } | ||
|  | 
 | ||
|  | // BinaryLog computes the binary logarithm of n. The result consists of a | ||
|  | // characteristic and a mantissa having precision mantissaBits. The value of | ||
|  | // the binary logarithm is | ||
|  | // | ||
|  | //	characteristic + mantissa*(2^-mantissaBits) | ||
|  | // | ||
|  | // BinaryLog panics for n <= 0 or mantissaBits < 0. | ||
|  | func BinaryLog(n *big.Int, mantissaBits int) (characteristic int, mantissa *big.Int) { | ||
|  | 	if n.Sign() <= 0 || mantissaBits < 0 { | ||
|  | 		panic("invalid argument of BinaryLog") | ||
|  | 	} | ||
|  | 
 | ||
|  | 	characteristic = n.BitLen() - 1 | ||
|  | 	mantissa = big.NewInt(0) | ||
|  | 	x := newFloat(n, characteristic, mantissaBits) | ||
|  | 	for ; mantissaBits != 0 && !x.eq1(); mantissaBits-- { | ||
|  | 		x.sqr() | ||
|  | 		mantissa.Lsh(mantissa, 1) | ||
|  | 		if x.ge2() { | ||
|  | 			mantissa.SetBit(mantissa, 0, 1) | ||
|  | 			x.div2() | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return characteristic, mantissa | ||
|  | } |