mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-31 08:12:26 -05:00 
			
		
		
		
	
		
			
	
	
		
			366 lines
		
	
	
	
		
			9.2 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
		
		
			
		
	
	
			366 lines
		
	
	
	
		
			9.2 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
|  | // Copyright 2015 The Go Authors. All rights reserved. | ||
|  | // Use of this source code is governed by a BSD-style | ||
|  | // license that can be found in the LICENSE file. | ||
|  | 
 | ||
|  | package trace | ||
|  | 
 | ||
|  | // This file implements histogramming for RPC statistics collection. | ||
|  | 
 | ||
|  | import ( | ||
|  | 	"bytes" | ||
|  | 	"fmt" | ||
|  | 	"html/template" | ||
|  | 	"log" | ||
|  | 	"math" | ||
|  | 	"sync" | ||
|  | 
 | ||
|  | 	"golang.org/x/net/internal/timeseries" | ||
|  | ) | ||
|  | 
 | ||
|  | const ( | ||
|  | 	bucketCount = 38 | ||
|  | ) | ||
|  | 
 | ||
|  | // histogram keeps counts of values in buckets that are spaced | ||
|  | // out in powers of 2: 0-1, 2-3, 4-7... | ||
|  | // histogram implements timeseries.Observable | ||
|  | type histogram struct { | ||
|  | 	sum          int64   // running total of measurements | ||
|  | 	sumOfSquares float64 // square of running total | ||
|  | 	buckets      []int64 // bucketed values for histogram | ||
|  | 	value        int     // holds a single value as an optimization | ||
|  | 	valueCount   int64   // number of values recorded for single value | ||
|  | } | ||
|  | 
 | ||
|  | // addMeasurement records a value measurement observation to the histogram. | ||
|  | func (h *histogram) addMeasurement(value int64) { | ||
|  | 	// TODO: assert invariant | ||
|  | 	h.sum += value | ||
|  | 	h.sumOfSquares += float64(value) * float64(value) | ||
|  | 
 | ||
|  | 	bucketIndex := getBucket(value) | ||
|  | 
 | ||
|  | 	if h.valueCount == 0 || (h.valueCount > 0 && h.value == bucketIndex) { | ||
|  | 		h.value = bucketIndex | ||
|  | 		h.valueCount++ | ||
|  | 	} else { | ||
|  | 		h.allocateBuckets() | ||
|  | 		h.buckets[bucketIndex]++ | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | func (h *histogram) allocateBuckets() { | ||
|  | 	if h.buckets == nil { | ||
|  | 		h.buckets = make([]int64, bucketCount) | ||
|  | 		h.buckets[h.value] = h.valueCount | ||
|  | 		h.value = 0 | ||
|  | 		h.valueCount = -1 | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | func log2(i int64) int { | ||
|  | 	n := 0 | ||
|  | 	for ; i >= 0x100; i >>= 8 { | ||
|  | 		n += 8 | ||
|  | 	} | ||
|  | 	for ; i > 0; i >>= 1 { | ||
|  | 		n += 1 | ||
|  | 	} | ||
|  | 	return n | ||
|  | } | ||
|  | 
 | ||
|  | func getBucket(i int64) (index int) { | ||
|  | 	index = log2(i) - 1 | ||
|  | 	if index < 0 { | ||
|  | 		index = 0 | ||
|  | 	} | ||
|  | 	if index >= bucketCount { | ||
|  | 		index = bucketCount - 1 | ||
|  | 	} | ||
|  | 	return | ||
|  | } | ||
|  | 
 | ||
|  | // Total returns the number of recorded observations. | ||
|  | func (h *histogram) total() (total int64) { | ||
|  | 	if h.valueCount >= 0 { | ||
|  | 		total = h.valueCount | ||
|  | 	} | ||
|  | 	for _, val := range h.buckets { | ||
|  | 		total += int64(val) | ||
|  | 	} | ||
|  | 	return | ||
|  | } | ||
|  | 
 | ||
|  | // Average returns the average value of recorded observations. | ||
|  | func (h *histogram) average() float64 { | ||
|  | 	t := h.total() | ||
|  | 	if t == 0 { | ||
|  | 		return 0 | ||
|  | 	} | ||
|  | 	return float64(h.sum) / float64(t) | ||
|  | } | ||
|  | 
 | ||
|  | // Variance returns the variance of recorded observations. | ||
|  | func (h *histogram) variance() float64 { | ||
|  | 	t := float64(h.total()) | ||
|  | 	if t == 0 { | ||
|  | 		return 0 | ||
|  | 	} | ||
|  | 	s := float64(h.sum) / t | ||
|  | 	return h.sumOfSquares/t - s*s | ||
|  | } | ||
|  | 
 | ||
|  | // StandardDeviation returns the standard deviation of recorded observations. | ||
|  | func (h *histogram) standardDeviation() float64 { | ||
|  | 	return math.Sqrt(h.variance()) | ||
|  | } | ||
|  | 
 | ||
|  | // PercentileBoundary estimates the value that the given fraction of recorded | ||
|  | // observations are less than. | ||
|  | func (h *histogram) percentileBoundary(percentile float64) int64 { | ||
|  | 	total := h.total() | ||
|  | 
 | ||
|  | 	// Corner cases (make sure result is strictly less than Total()) | ||
|  | 	if total == 0 { | ||
|  | 		return 0 | ||
|  | 	} else if total == 1 { | ||
|  | 		return int64(h.average()) | ||
|  | 	} | ||
|  | 
 | ||
|  | 	percentOfTotal := round(float64(total) * percentile) | ||
|  | 	var runningTotal int64 | ||
|  | 
 | ||
|  | 	for i := range h.buckets { | ||
|  | 		value := h.buckets[i] | ||
|  | 		runningTotal += value | ||
|  | 		if runningTotal == percentOfTotal { | ||
|  | 			// We hit an exact bucket boundary. If the next bucket has data, it is a | ||
|  | 			// good estimate of the value. If the bucket is empty, we interpolate the | ||
|  | 			// midpoint between the next bucket's boundary and the next non-zero | ||
|  | 			// bucket. If the remaining buckets are all empty, then we use the | ||
|  | 			// boundary for the next bucket as the estimate. | ||
|  | 			j := uint8(i + 1) | ||
|  | 			min := bucketBoundary(j) | ||
|  | 			if runningTotal < total { | ||
|  | 				for h.buckets[j] == 0 { | ||
|  | 					j++ | ||
|  | 				} | ||
|  | 			} | ||
|  | 			max := bucketBoundary(j) | ||
|  | 			return min + round(float64(max-min)/2) | ||
|  | 		} else if runningTotal > percentOfTotal { | ||
|  | 			// The value is in this bucket. Interpolate the value. | ||
|  | 			delta := runningTotal - percentOfTotal | ||
|  | 			percentBucket := float64(value-delta) / float64(value) | ||
|  | 			bucketMin := bucketBoundary(uint8(i)) | ||
|  | 			nextBucketMin := bucketBoundary(uint8(i + 1)) | ||
|  | 			bucketSize := nextBucketMin - bucketMin | ||
|  | 			return bucketMin + round(percentBucket*float64(bucketSize)) | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return bucketBoundary(bucketCount - 1) | ||
|  | } | ||
|  | 
 | ||
|  | // Median returns the estimated median of the observed values. | ||
|  | func (h *histogram) median() int64 { | ||
|  | 	return h.percentileBoundary(0.5) | ||
|  | } | ||
|  | 
 | ||
|  | // Add adds other to h. | ||
|  | func (h *histogram) Add(other timeseries.Observable) { | ||
|  | 	o := other.(*histogram) | ||
|  | 	if o.valueCount == 0 { | ||
|  | 		// Other histogram is empty | ||
|  | 	} else if h.valueCount >= 0 && o.valueCount > 0 && h.value == o.value { | ||
|  | 		// Both have a single bucketed value, aggregate them | ||
|  | 		h.valueCount += o.valueCount | ||
|  | 	} else { | ||
|  | 		// Two different values necessitate buckets in this histogram | ||
|  | 		h.allocateBuckets() | ||
|  | 		if o.valueCount >= 0 { | ||
|  | 			h.buckets[o.value] += o.valueCount | ||
|  | 		} else { | ||
|  | 			for i := range h.buckets { | ||
|  | 				h.buckets[i] += o.buckets[i] | ||
|  | 			} | ||
|  | 		} | ||
|  | 	} | ||
|  | 	h.sumOfSquares += o.sumOfSquares | ||
|  | 	h.sum += o.sum | ||
|  | } | ||
|  | 
 | ||
|  | // Clear resets the histogram to an empty state, removing all observed values. | ||
|  | func (h *histogram) Clear() { | ||
|  | 	h.buckets = nil | ||
|  | 	h.value = 0 | ||
|  | 	h.valueCount = 0 | ||
|  | 	h.sum = 0 | ||
|  | 	h.sumOfSquares = 0 | ||
|  | } | ||
|  | 
 | ||
|  | // CopyFrom copies from other, which must be a *histogram, into h. | ||
|  | func (h *histogram) CopyFrom(other timeseries.Observable) { | ||
|  | 	o := other.(*histogram) | ||
|  | 	if o.valueCount == -1 { | ||
|  | 		h.allocateBuckets() | ||
|  | 		copy(h.buckets, o.buckets) | ||
|  | 	} | ||
|  | 	h.sum = o.sum | ||
|  | 	h.sumOfSquares = o.sumOfSquares | ||
|  | 	h.value = o.value | ||
|  | 	h.valueCount = o.valueCount | ||
|  | } | ||
|  | 
 | ||
|  | // Multiply scales the histogram by the specified ratio. | ||
|  | func (h *histogram) Multiply(ratio float64) { | ||
|  | 	if h.valueCount == -1 { | ||
|  | 		for i := range h.buckets { | ||
|  | 			h.buckets[i] = int64(float64(h.buckets[i]) * ratio) | ||
|  | 		} | ||
|  | 	} else { | ||
|  | 		h.valueCount = int64(float64(h.valueCount) * ratio) | ||
|  | 	} | ||
|  | 	h.sum = int64(float64(h.sum) * ratio) | ||
|  | 	h.sumOfSquares = h.sumOfSquares * ratio | ||
|  | } | ||
|  | 
 | ||
|  | // New creates a new histogram. | ||
|  | func (h *histogram) New() timeseries.Observable { | ||
|  | 	r := new(histogram) | ||
|  | 	r.Clear() | ||
|  | 	return r | ||
|  | } | ||
|  | 
 | ||
|  | func (h *histogram) String() string { | ||
|  | 	return fmt.Sprintf("%d, %f, %d, %d, %v", | ||
|  | 		h.sum, h.sumOfSquares, h.value, h.valueCount, h.buckets) | ||
|  | } | ||
|  | 
 | ||
|  | // round returns the closest int64 to the argument | ||
|  | func round(in float64) int64 { | ||
|  | 	return int64(math.Floor(in + 0.5)) | ||
|  | } | ||
|  | 
 | ||
|  | // bucketBoundary returns the first value in the bucket. | ||
|  | func bucketBoundary(bucket uint8) int64 { | ||
|  | 	if bucket == 0 { | ||
|  | 		return 0 | ||
|  | 	} | ||
|  | 	return 1 << bucket | ||
|  | } | ||
|  | 
 | ||
|  | // bucketData holds data about a specific bucket for use in distTmpl. | ||
|  | type bucketData struct { | ||
|  | 	Lower, Upper       int64 | ||
|  | 	N                  int64 | ||
|  | 	Pct, CumulativePct float64 | ||
|  | 	GraphWidth         int | ||
|  | } | ||
|  | 
 | ||
|  | // data holds data about a Distribution for use in distTmpl. | ||
|  | type data struct { | ||
|  | 	Buckets                 []*bucketData | ||
|  | 	Count, Median           int64 | ||
|  | 	Mean, StandardDeviation float64 | ||
|  | } | ||
|  | 
 | ||
|  | // maxHTMLBarWidth is the maximum width of the HTML bar for visualizing buckets. | ||
|  | const maxHTMLBarWidth = 350.0 | ||
|  | 
 | ||
|  | // newData returns data representing h for use in distTmpl. | ||
|  | func (h *histogram) newData() *data { | ||
|  | 	// Force the allocation of buckets to simplify the rendering implementation | ||
|  | 	h.allocateBuckets() | ||
|  | 	// We scale the bars on the right so that the largest bar is | ||
|  | 	// maxHTMLBarWidth pixels in width. | ||
|  | 	maxBucket := int64(0) | ||
|  | 	for _, n := range h.buckets { | ||
|  | 		if n > maxBucket { | ||
|  | 			maxBucket = n | ||
|  | 		} | ||
|  | 	} | ||
|  | 	total := h.total() | ||
|  | 	barsizeMult := maxHTMLBarWidth / float64(maxBucket) | ||
|  | 	var pctMult float64 | ||
|  | 	if total == 0 { | ||
|  | 		pctMult = 1.0 | ||
|  | 	} else { | ||
|  | 		pctMult = 100.0 / float64(total) | ||
|  | 	} | ||
|  | 
 | ||
|  | 	buckets := make([]*bucketData, len(h.buckets)) | ||
|  | 	runningTotal := int64(0) | ||
|  | 	for i, n := range h.buckets { | ||
|  | 		if n == 0 { | ||
|  | 			continue | ||
|  | 		} | ||
|  | 		runningTotal += n | ||
|  | 		var upperBound int64 | ||
|  | 		if i < bucketCount-1 { | ||
|  | 			upperBound = bucketBoundary(uint8(i + 1)) | ||
|  | 		} else { | ||
|  | 			upperBound = math.MaxInt64 | ||
|  | 		} | ||
|  | 		buckets[i] = &bucketData{ | ||
|  | 			Lower:         bucketBoundary(uint8(i)), | ||
|  | 			Upper:         upperBound, | ||
|  | 			N:             n, | ||
|  | 			Pct:           float64(n) * pctMult, | ||
|  | 			CumulativePct: float64(runningTotal) * pctMult, | ||
|  | 			GraphWidth:    int(float64(n) * barsizeMult), | ||
|  | 		} | ||
|  | 	} | ||
|  | 	return &data{ | ||
|  | 		Buckets:           buckets, | ||
|  | 		Count:             total, | ||
|  | 		Median:            h.median(), | ||
|  | 		Mean:              h.average(), | ||
|  | 		StandardDeviation: h.standardDeviation(), | ||
|  | 	} | ||
|  | } | ||
|  | 
 | ||
|  | func (h *histogram) html() template.HTML { | ||
|  | 	buf := new(bytes.Buffer) | ||
|  | 	if err := distTmpl().Execute(buf, h.newData()); err != nil { | ||
|  | 		buf.Reset() | ||
|  | 		log.Printf("net/trace: couldn't execute template: %v", err) | ||
|  | 	} | ||
|  | 	return template.HTML(buf.String()) | ||
|  | } | ||
|  | 
 | ||
|  | var distTmplCache *template.Template | ||
|  | var distTmplOnce sync.Once | ||
|  | 
 | ||
|  | func distTmpl() *template.Template { | ||
|  | 	distTmplOnce.Do(func() { | ||
|  | 		// Input: data | ||
|  | 		distTmplCache = template.Must(template.New("distTmpl").Parse(` | ||
|  | <table> | ||
|  | <tr> | ||
|  |     <td style="padding:0.25em">Count: {{.Count}}</td> | ||
|  |     <td style="padding:0.25em">Mean: {{printf "%.0f" .Mean}}</td> | ||
|  |     <td style="padding:0.25em">StdDev: {{printf "%.0f" .StandardDeviation}}</td> | ||
|  |     <td style="padding:0.25em">Median: {{.Median}}</td> | ||
|  | </tr> | ||
|  | </table> | ||
|  | <hr> | ||
|  | <table> | ||
|  | {{range $b := .Buckets}} | ||
|  | {{if $b}} | ||
|  |   <tr> | ||
|  |     <td style="padding:0 0 0 0.25em">[</td> | ||
|  |     <td style="text-align:right;padding:0 0.25em">{{.Lower}},</td> | ||
|  |     <td style="text-align:right;padding:0 0.25em">{{.Upper}})</td> | ||
|  |     <td style="text-align:right;padding:0 0.25em">{{.N}}</td> | ||
|  |     <td style="text-align:right;padding:0 0.25em">{{printf "%#.3f" .Pct}}%</td> | ||
|  |     <td style="text-align:right;padding:0 0.25em">{{printf "%#.3f" .CumulativePct}}%</td> | ||
|  |     <td><div style="background-color: blue; height: 1em; width: {{.GraphWidth}};"></div></td> | ||
|  |   </tr> | ||
|  | {{end}} | ||
|  | {{end}} | ||
|  | </table> | ||
|  | `)) | ||
|  | 	}) | ||
|  | 	return distTmplCache | ||
|  | } |