mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-11-04 06:02:26 -06:00 
			
		
		
		
	
		
			
	
	
		
			332 lines
		
	
	
	
		
			6.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
		
		
			
		
	
	
			332 lines
		
	
	
	
		
			6.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| 
								 | 
							
								// Copyright (c) 2014 The mathutil Authors. All rights reserved.
							 | 
						||
| 
								 | 
							
								// Use of this source code is governed by a BSD-style
							 | 
						||
| 
								 | 
							
								// license that can be found in the LICENSE file.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								package mathutil // import "modernc.org/mathutil"
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								import (
							 | 
						||
| 
								 | 
							
									"math"
							 | 
						||
| 
								 | 
							
								)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// IsPrimeUint16 returns true if n is prime. Typical run time is few ns.
							 | 
						||
| 
								 | 
							
								func IsPrimeUint16(n uint16) bool {
							 | 
						||
| 
								 | 
							
									return n > 0 && primes16[n-1] == 1
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// NextPrimeUint16 returns first prime > n and true if successful or an
							 | 
						||
| 
								 | 
							
								// undefined value and false if there is no next prime in the uint16 limits.
							 | 
						||
| 
								 | 
							
								// Typical run time is few ns.
							 | 
						||
| 
								 | 
							
								func NextPrimeUint16(n uint16) (p uint16, ok bool) {
							 | 
						||
| 
								 | 
							
									return n + uint16(primes16[n]), n < 65521
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// IsPrime returns true if n is prime. Typical run time is about 100 ns.
							 | 
						||
| 
								 | 
							
								func IsPrime(n uint32) bool {
							 | 
						||
| 
								 | 
							
									switch {
							 | 
						||
| 
								 | 
							
									case n&1 == 0:
							 | 
						||
| 
								 | 
							
										return n == 2
							 | 
						||
| 
								 | 
							
									case n%3 == 0:
							 | 
						||
| 
								 | 
							
										return n == 3
							 | 
						||
| 
								 | 
							
									case n%5 == 0:
							 | 
						||
| 
								 | 
							
										return n == 5
							 | 
						||
| 
								 | 
							
									case n%7 == 0:
							 | 
						||
| 
								 | 
							
										return n == 7
							 | 
						||
| 
								 | 
							
									case n%11 == 0:
							 | 
						||
| 
								 | 
							
										return n == 11
							 | 
						||
| 
								 | 
							
									case n%13 == 0:
							 | 
						||
| 
								 | 
							
										return n == 13
							 | 
						||
| 
								 | 
							
									case n%17 == 0:
							 | 
						||
| 
								 | 
							
										return n == 17
							 | 
						||
| 
								 | 
							
									case n%19 == 0:
							 | 
						||
| 
								 | 
							
										return n == 19
							 | 
						||
| 
								 | 
							
									case n%23 == 0:
							 | 
						||
| 
								 | 
							
										return n == 23
							 | 
						||
| 
								 | 
							
									case n%29 == 0:
							 | 
						||
| 
								 | 
							
										return n == 29
							 | 
						||
| 
								 | 
							
									case n%31 == 0:
							 | 
						||
| 
								 | 
							
										return n == 31
							 | 
						||
| 
								 | 
							
									case n%37 == 0:
							 | 
						||
| 
								 | 
							
										return n == 37
							 | 
						||
| 
								 | 
							
									case n%41 == 0:
							 | 
						||
| 
								 | 
							
										return n == 41
							 | 
						||
| 
								 | 
							
									case n%43 == 0:
							 | 
						||
| 
								 | 
							
										return n == 43
							 | 
						||
| 
								 | 
							
									case n%47 == 0:
							 | 
						||
| 
								 | 
							
										return n == 47
							 | 
						||
| 
								 | 
							
									case n%53 == 0:
							 | 
						||
| 
								 | 
							
										return n == 53 // Benchmarked optimum
							 | 
						||
| 
								 | 
							
									case n < 65536:
							 | 
						||
| 
								 | 
							
										// use table data
							 | 
						||
| 
								 | 
							
										return IsPrimeUint16(uint16(n))
							 | 
						||
| 
								 | 
							
									default:
							 | 
						||
| 
								 | 
							
										mod := ModPowUint32(2, (n+1)/2, n)
							 | 
						||
| 
								 | 
							
										if mod != 2 && mod != n-2 {
							 | 
						||
| 
								 | 
							
											return false
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										blk := &lohi[n>>24]
							 | 
						||
| 
								 | 
							
										lo, hi := blk.lo, blk.hi
							 | 
						||
| 
								 | 
							
										for lo <= hi {
							 | 
						||
| 
								 | 
							
											index := (lo + hi) >> 1
							 | 
						||
| 
								 | 
							
											liar := liars[index]
							 | 
						||
| 
								 | 
							
											switch {
							 | 
						||
| 
								 | 
							
											case n > liar:
							 | 
						||
| 
								 | 
							
												lo = index + 1
							 | 
						||
| 
								 | 
							
											case n < liar:
							 | 
						||
| 
								 | 
							
												hi = index - 1
							 | 
						||
| 
								 | 
							
											default:
							 | 
						||
| 
								 | 
							
												return false
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										return true
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// IsPrimeUint64 returns true if n is prime. Typical run time is few tens of µs.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// SPRP bases: http://miller-rabin.appspot.com
							 | 
						||
| 
								 | 
							
								func IsPrimeUint64(n uint64) bool {
							 | 
						||
| 
								 | 
							
									switch {
							 | 
						||
| 
								 | 
							
									case n%2 == 0:
							 | 
						||
| 
								 | 
							
										return n == 2
							 | 
						||
| 
								 | 
							
									case n%3 == 0:
							 | 
						||
| 
								 | 
							
										return n == 3
							 | 
						||
| 
								 | 
							
									case n%5 == 0:
							 | 
						||
| 
								 | 
							
										return n == 5
							 | 
						||
| 
								 | 
							
									case n%7 == 0:
							 | 
						||
| 
								 | 
							
										return n == 7
							 | 
						||
| 
								 | 
							
									case n%11 == 0:
							 | 
						||
| 
								 | 
							
										return n == 11
							 | 
						||
| 
								 | 
							
									case n%13 == 0:
							 | 
						||
| 
								 | 
							
										return n == 13
							 | 
						||
| 
								 | 
							
									case n%17 == 0:
							 | 
						||
| 
								 | 
							
										return n == 17
							 | 
						||
| 
								 | 
							
									case n%19 == 0:
							 | 
						||
| 
								 | 
							
										return n == 19
							 | 
						||
| 
								 | 
							
									case n%23 == 0:
							 | 
						||
| 
								 | 
							
										return n == 23
							 | 
						||
| 
								 | 
							
									case n%29 == 0:
							 | 
						||
| 
								 | 
							
										return n == 29
							 | 
						||
| 
								 | 
							
									case n%31 == 0:
							 | 
						||
| 
								 | 
							
										return n == 31
							 | 
						||
| 
								 | 
							
									case n%37 == 0:
							 | 
						||
| 
								 | 
							
										return n == 37
							 | 
						||
| 
								 | 
							
									case n%41 == 0:
							 | 
						||
| 
								 | 
							
										return n == 41
							 | 
						||
| 
								 | 
							
									case n%43 == 0:
							 | 
						||
| 
								 | 
							
										return n == 43
							 | 
						||
| 
								 | 
							
									case n%47 == 0:
							 | 
						||
| 
								 | 
							
										return n == 47
							 | 
						||
| 
								 | 
							
									case n%53 == 0:
							 | 
						||
| 
								 | 
							
										return n == 53
							 | 
						||
| 
								 | 
							
									case n%59 == 0:
							 | 
						||
| 
								 | 
							
										return n == 59
							 | 
						||
| 
								 | 
							
									case n%61 == 0:
							 | 
						||
| 
								 | 
							
										return n == 61
							 | 
						||
| 
								 | 
							
									case n%67 == 0:
							 | 
						||
| 
								 | 
							
										return n == 67
							 | 
						||
| 
								 | 
							
									case n%71 == 0:
							 | 
						||
| 
								 | 
							
										return n == 71
							 | 
						||
| 
								 | 
							
									case n%73 == 0:
							 | 
						||
| 
								 | 
							
										return n == 73
							 | 
						||
| 
								 | 
							
									case n%79 == 0:
							 | 
						||
| 
								 | 
							
										return n == 79
							 | 
						||
| 
								 | 
							
									case n%83 == 0:
							 | 
						||
| 
								 | 
							
										return n == 83
							 | 
						||
| 
								 | 
							
									case n%89 == 0:
							 | 
						||
| 
								 | 
							
										return n == 89 // Benchmarked optimum
							 | 
						||
| 
								 | 
							
									case n <= math.MaxUint16:
							 | 
						||
| 
								 | 
							
										return IsPrimeUint16(uint16(n))
							 | 
						||
| 
								 | 
							
									case n <= math.MaxUint32:
							 | 
						||
| 
								 | 
							
										return ProbablyPrimeUint32(uint32(n), 11000544) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint32(uint32(n), 31481107)
							 | 
						||
| 
								 | 
							
									case n < 105936894253:
							 | 
						||
| 
								 | 
							
										return ProbablyPrimeUint64_32(n, 2) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 1005905886) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 1340600841)
							 | 
						||
| 
								 | 
							
									case n < 31858317218647:
							 | 
						||
| 
								 | 
							
										return ProbablyPrimeUint64_32(n, 2) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 642735) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 553174392) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 3046413974)
							 | 
						||
| 
								 | 
							
									case n < 3071837692357849:
							 | 
						||
| 
								 | 
							
										return ProbablyPrimeUint64_32(n, 2) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 75088) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 642735) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 203659041) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 3613982119)
							 | 
						||
| 
								 | 
							
									default:
							 | 
						||
| 
								 | 
							
										return ProbablyPrimeUint64_32(n, 2) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 325) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 9375) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 28178) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 450775) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 9780504) &&
							 | 
						||
| 
								 | 
							
											ProbablyPrimeUint64_32(n, 1795265022)
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// NextPrime returns first prime > n and true if successful or an undefined value and false if there
							 | 
						||
| 
								 | 
							
								// is no next prime in the uint32 limits. Typical run time is about 2 µs.
							 | 
						||
| 
								 | 
							
								func NextPrime(n uint32) (p uint32, ok bool) {
							 | 
						||
| 
								 | 
							
									switch {
							 | 
						||
| 
								 | 
							
									case n < 65521:
							 | 
						||
| 
								 | 
							
										p16, _ := NextPrimeUint16(uint16(n))
							 | 
						||
| 
								 | 
							
										return uint32(p16), true
							 | 
						||
| 
								 | 
							
									case n >= math.MaxUint32-4:
							 | 
						||
| 
								 | 
							
										return
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									n++
							 | 
						||
| 
								 | 
							
									var d0, d uint32
							 | 
						||
| 
								 | 
							
									switch mod := n % 6; mod {
							 | 
						||
| 
								 | 
							
									case 0:
							 | 
						||
| 
								 | 
							
										d0, d = 1, 4
							 | 
						||
| 
								 | 
							
									case 1:
							 | 
						||
| 
								 | 
							
										d = 4
							 | 
						||
| 
								 | 
							
									case 2, 3, 4:
							 | 
						||
| 
								 | 
							
										d0, d = 5-mod, 2
							 | 
						||
| 
								 | 
							
									case 5:
							 | 
						||
| 
								 | 
							
										d = 2
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									p = n + d0
							 | 
						||
| 
								 | 
							
									if p < n { // overflow
							 | 
						||
| 
								 | 
							
										return
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for {
							 | 
						||
| 
								 | 
							
										if IsPrime(p) {
							 | 
						||
| 
								 | 
							
											return p, true
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										p0 := p
							 | 
						||
| 
								 | 
							
										p += d
							 | 
						||
| 
								 | 
							
										if p < p0 { // overflow
							 | 
						||
| 
								 | 
							
											break
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										d ^= 6
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// NextPrimeUint64 returns first prime > n and true if successful or an undefined value and false if there
							 | 
						||
| 
								 | 
							
								// is no next prime in the uint64 limits. Typical run time is in hundreds of µs.
							 | 
						||
| 
								 | 
							
								func NextPrimeUint64(n uint64) (p uint64, ok bool) {
							 | 
						||
| 
								 | 
							
									switch {
							 | 
						||
| 
								 | 
							
									case n < 65521:
							 | 
						||
| 
								 | 
							
										p16, _ := NextPrimeUint16(uint16(n))
							 | 
						||
| 
								 | 
							
										return uint64(p16), true
							 | 
						||
| 
								 | 
							
									case n >= 18446744073709551557: // last uint64 prime
							 | 
						||
| 
								 | 
							
										return
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									n++
							 | 
						||
| 
								 | 
							
									var d0, d uint64
							 | 
						||
| 
								 | 
							
									switch mod := n % 6; mod {
							 | 
						||
| 
								 | 
							
									case 0:
							 | 
						||
| 
								 | 
							
										d0, d = 1, 4
							 | 
						||
| 
								 | 
							
									case 1:
							 | 
						||
| 
								 | 
							
										d = 4
							 | 
						||
| 
								 | 
							
									case 2, 3, 4:
							 | 
						||
| 
								 | 
							
										d0, d = 5-mod, 2
							 | 
						||
| 
								 | 
							
									case 5:
							 | 
						||
| 
								 | 
							
										d = 2
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									p = n + d0
							 | 
						||
| 
								 | 
							
									if p < n { // overflow
							 | 
						||
| 
								 | 
							
										return
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									for {
							 | 
						||
| 
								 | 
							
										if ok = IsPrimeUint64(p); ok {
							 | 
						||
| 
								 | 
							
											break
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										p0 := p
							 | 
						||
| 
								 | 
							
										p += d
							 | 
						||
| 
								 | 
							
										if p < p0 { // overflow
							 | 
						||
| 
								 | 
							
											break
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										d ^= 6
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// FactorTerm is one term of an integer factorization.
							 | 
						||
| 
								 | 
							
								type FactorTerm struct {
							 | 
						||
| 
								 | 
							
									Prime uint32 // The divisor
							 | 
						||
| 
								 | 
							
									Power uint32 // Term == Prime^Power
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// FactorTerms represent a factorization of an integer
							 | 
						||
| 
								 | 
							
								type FactorTerms []FactorTerm
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// FactorInt returns prime factorization of n > 1 or nil otherwise.
							 | 
						||
| 
								 | 
							
								// Resulting factors are ordered by Prime. Typical run time is few µs.
							 | 
						||
| 
								 | 
							
								func FactorInt(n uint32) (f FactorTerms) {
							 | 
						||
| 
								 | 
							
									switch {
							 | 
						||
| 
								 | 
							
									case n < 2:
							 | 
						||
| 
								 | 
							
										return
							 | 
						||
| 
								 | 
							
									case IsPrime(n):
							 | 
						||
| 
								 | 
							
										return []FactorTerm{{n, 1}}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									f, w := make([]FactorTerm, 9), 0
							 | 
						||
| 
								 | 
							
									for p := 2; p < len(primes16); p += int(primes16[p]) {
							 | 
						||
| 
								 | 
							
										if uint(p*p) > uint(n) {
							 | 
						||
| 
								 | 
							
											break
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
										power := uint32(0)
							 | 
						||
| 
								 | 
							
										for n%uint32(p) == 0 {
							 | 
						||
| 
								 | 
							
											n /= uint32(p)
							 | 
						||
| 
								 | 
							
											power++
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										if power != 0 {
							 | 
						||
| 
								 | 
							
											f[w] = FactorTerm{uint32(p), power}
							 | 
						||
| 
								 | 
							
											w++
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
										if n == 1 {
							 | 
						||
| 
								 | 
							
											break
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									if n != 1 {
							 | 
						||
| 
								 | 
							
										f[w] = FactorTerm{n, 1}
							 | 
						||
| 
								 | 
							
										w++
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
									return f[:w]
							 | 
						||
| 
								 | 
							
								}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								// PrimorialProductsUint32 returns a slice of numbers in [lo, hi] which are a
							 | 
						||
| 
								 | 
							
								// product of max 'max' primorials. The slice is not sorted.
							 | 
						||
| 
								 | 
							
								//
							 | 
						||
| 
								 | 
							
								// See also: http://en.wikipedia.org/wiki/Primorial
							 | 
						||
| 
								 | 
							
								func PrimorialProductsUint32(lo, hi, max uint32) (r []uint32) {
							 | 
						||
| 
								 | 
							
									lo64, hi64 := int64(lo), int64(hi)
							 | 
						||
| 
								 | 
							
									if max > 31 { // N/A
							 | 
						||
| 
								 | 
							
										max = 31
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									var f func(int64, int64, uint32)
							 | 
						||
| 
								 | 
							
									f = func(n, p int64, emax uint32) {
							 | 
						||
| 
								 | 
							
										e := uint32(1)
							 | 
						||
| 
								 | 
							
										for n <= hi64 && e <= emax {
							 | 
						||
| 
								 | 
							
											n *= p
							 | 
						||
| 
								 | 
							
											if n >= lo64 && n <= hi64 {
							 | 
						||
| 
								 | 
							
												r = append(r, uint32(n))
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											if n < hi64 {
							 | 
						||
| 
								 | 
							
												p, _ := NextPrime(uint32(p))
							 | 
						||
| 
								 | 
							
												f(n, int64(p), e)
							 | 
						||
| 
								 | 
							
											}
							 | 
						||
| 
								 | 
							
											e++
							 | 
						||
| 
								 | 
							
										}
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
									f(1, 2, max)
							 | 
						||
| 
								 | 
							
									return
							 | 
						||
| 
								 | 
							
								}
							 |