mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-31 09:52:26 -05:00 
			
		
		
		
	Grand test fixup (#138)
* start fixing up tests * fix up tests + automate with drone * fiddle with linting * messing about with drone.yml * some more fiddling * hmmm * add cache * add vendor directory * verbose * ci updates * update some little things * update sig
This commit is contained in:
		
					parent
					
						
							
								329a5e8144
							
						
					
				
			
			
				commit
				
					
						98263a7de6
					
				
			
		
					 2677 changed files with 1090869 additions and 219 deletions
				
			
		
							
								
								
									
										97
									
								
								vendor/github.com/golang/geo/s2/wedge_relations.go
									
										
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										97
									
								
								vendor/github.com/golang/geo/s2/wedge_relations.go
									
										
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							|  | @ -0,0 +1,97 @@ | |||
| // Copyright 2017 Google Inc. All rights reserved. | ||||
| // | ||||
| // Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| // you may not use this file except in compliance with the License. | ||||
| // You may obtain a copy of the License at | ||||
| // | ||||
| //     http://www.apache.org/licenses/LICENSE-2.0 | ||||
| // | ||||
| // Unless required by applicable law or agreed to in writing, software | ||||
| // distributed under the License is distributed on an "AS IS" BASIS, | ||||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| // See the License for the specific language governing permissions and | ||||
| // limitations under the License. | ||||
| 
 | ||||
| package s2 | ||||
| 
 | ||||
| // WedgeRel enumerates the possible relation between two wedges A and B. | ||||
| type WedgeRel int | ||||
| 
 | ||||
| // Define the different possible relationships between two wedges. | ||||
| // | ||||
| // Given an edge chain (x0, x1, x2), the wedge at x1 is the region to the | ||||
| // left of the edges. More precisely, it is the set of all rays from x1x0 | ||||
| // (inclusive) to x1x2 (exclusive) in the *clockwise* direction. | ||||
| const ( | ||||
| 	WedgeEquals              WedgeRel = iota // A and B are equal. | ||||
| 	WedgeProperlyContains                    // A is a strict superset of B. | ||||
| 	WedgeIsProperlyContained                 // A is a strict subset of B. | ||||
| 	WedgeProperlyOverlaps                    // A-B, B-A, and A intersect B are non-empty. | ||||
| 	WedgeIsDisjoint                          // A and B are disjoint. | ||||
| ) | ||||
| 
 | ||||
| // WedgeRelation reports the relation between two non-empty wedges | ||||
| // A=(a0, ab1, a2) and B=(b0, ab1, b2). | ||||
| func WedgeRelation(a0, ab1, a2, b0, b2 Point) WedgeRel { | ||||
| 	// There are 6 possible edge orderings at a shared vertex (all | ||||
| 	// of these orderings are circular, i.e. abcd == bcda): | ||||
| 	// | ||||
| 	//  (1) a2 b2 b0 a0: A contains B | ||||
| 	//  (2) a2 a0 b0 b2: B contains A | ||||
| 	//  (3) a2 a0 b2 b0: A and B are disjoint | ||||
| 	//  (4) a2 b0 a0 b2: A and B intersect in one wedge | ||||
| 	//  (5) a2 b2 a0 b0: A and B intersect in one wedge | ||||
| 	//  (6) a2 b0 b2 a0: A and B intersect in two wedges | ||||
| 	// | ||||
| 	// We do not distinguish between 4, 5, and 6. | ||||
| 	// We pay extra attention when some of the edges overlap.  When edges | ||||
| 	// overlap, several of these orderings can be satisfied, and we take | ||||
| 	// the most specific. | ||||
| 	if a0 == b0 && a2 == b2 { | ||||
| 		return WedgeEquals | ||||
| 	} | ||||
| 
 | ||||
| 	// Cases 1, 2, 5, and 6 | ||||
| 	if OrderedCCW(a0, a2, b2, ab1) { | ||||
| 		// The cases with this vertex ordering are 1, 5, and 6, | ||||
| 		if OrderedCCW(b2, b0, a0, ab1) { | ||||
| 			return WedgeProperlyContains | ||||
| 		} | ||||
| 
 | ||||
| 		// We are in case 5 or 6, or case 2 if a2 == b2. | ||||
| 		if a2 == b2 { | ||||
| 			return WedgeIsProperlyContained | ||||
| 		} | ||||
| 		return WedgeProperlyOverlaps | ||||
| 
 | ||||
| 	} | ||||
| 	// We are in case 2, 3, or 4. | ||||
| 	if OrderedCCW(a0, b0, b2, ab1) { | ||||
| 		return WedgeIsProperlyContained | ||||
| 	} | ||||
| 
 | ||||
| 	if OrderedCCW(a0, b0, a2, ab1) { | ||||
| 		return WedgeIsDisjoint | ||||
| 	} | ||||
| 	return WedgeProperlyOverlaps | ||||
| } | ||||
| 
 | ||||
| // WedgeContains reports whether non-empty wedge A=(a0, ab1, a2) contains B=(b0, ab1, b2). | ||||
| // Equivalent to WedgeRelation == WedgeProperlyContains || WedgeEquals. | ||||
| func WedgeContains(a0, ab1, a2, b0, b2 Point) bool { | ||||
| 	// For A to contain B (where each loop interior is defined to be its left | ||||
| 	// side), the CCW edge order around ab1 must be a2 b2 b0 a0.  We split | ||||
| 	// this test into two parts that test three vertices each. | ||||
| 	return OrderedCCW(a2, b2, b0, ab1) && OrderedCCW(b0, a0, a2, ab1) | ||||
| } | ||||
| 
 | ||||
| // WedgeIntersects reports whether non-empty wedge A=(a0, ab1, a2) intersects B=(b0, ab1, b2). | ||||
| // Equivalent but faster than WedgeRelation != WedgeIsDisjoint | ||||
| func WedgeIntersects(a0, ab1, a2, b0, b2 Point) bool { | ||||
| 	// For A not to intersect B (where each loop interior is defined to be | ||||
| 	// its left side), the CCW edge order around ab1 must be a0 b2 b0 a2. | ||||
| 	// Note that it's important to write these conditions as negatives | ||||
| 	// (!OrderedCCW(a,b,c,o) rather than Ordered(c,b,a,o)) to get correct | ||||
| 	// results when two vertices are the same. | ||||
| 	return !(OrderedCCW(a0, b2, b0, ab1) && OrderedCCW(b0, a2, a0, ab1)) | ||||
| } | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue