mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2025-11-18 14:17:30 -06:00
[chore] update dependencies (#4188)
Update dependencies:
- github.com/gin-gonic/gin v1.10.0 -> v1.10.1
- github.com/gin-contrib/sessions v1.10.3 -> v1.10.4
- github.com/jackc/pgx/v5 v5.7.4 -> v5.7.5
- github.com/minio/minio-go/v7 v7.0.91 -> v7.0.92
- github.com/pquerna/otp v1.4.0 -> v1.5.0
- github.com/tdewolff/minify/v2 v2.23.5 -> v2.23.8
- github.com/yuin/goldmark v1.7.11 -> v1.7.12
- go.opentelemetry.io/otel{,/*} v1.35.0 -> v1.36.0
- modernc.org/sqlite v1.37.0 -> v1.37.1
Reviewed-on: https://codeberg.org/superseriousbusiness/gotosocial/pulls/4188
Reviewed-by: Daenney <daenney@noreply.codeberg.org>
Co-authored-by: kim <grufwub@gmail.com>
Co-committed-by: kim <grufwub@gmail.com>
This commit is contained in:
parent
20aad9be0f
commit
b6ff55662e
214 changed files with 44839 additions and 32023 deletions
10
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/aggregate.go
generated
vendored
10
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/aggregate.go
generated
vendored
|
|
@ -121,7 +121,10 @@ func (b Builder[N]) Sum(monotonic bool) (Measure[N], ComputeAggregation) {
|
|||
|
||||
// ExplicitBucketHistogram returns a histogram aggregate function input and
|
||||
// output.
|
||||
func (b Builder[N]) ExplicitBucketHistogram(boundaries []float64, noMinMax, noSum bool) (Measure[N], ComputeAggregation) {
|
||||
func (b Builder[N]) ExplicitBucketHistogram(
|
||||
boundaries []float64,
|
||||
noMinMax, noSum bool,
|
||||
) (Measure[N], ComputeAggregation) {
|
||||
h := newHistogram[N](boundaries, noMinMax, noSum, b.AggregationLimit, b.resFunc())
|
||||
switch b.Temporality {
|
||||
case metricdata.DeltaTemporality:
|
||||
|
|
@ -133,7 +136,10 @@ func (b Builder[N]) ExplicitBucketHistogram(boundaries []float64, noMinMax, noSu
|
|||
|
||||
// ExponentialBucketHistogram returns a histogram aggregate function input and
|
||||
// output.
|
||||
func (b Builder[N]) ExponentialBucketHistogram(maxSize, maxScale int32, noMinMax, noSum bool) (Measure[N], ComputeAggregation) {
|
||||
func (b Builder[N]) ExponentialBucketHistogram(
|
||||
maxSize, maxScale int32,
|
||||
noMinMax, noSum bool,
|
||||
) (Measure[N], ComputeAggregation) {
|
||||
h := newExponentialHistogram[N](maxSize, maxScale, noMinMax, noSum, b.AggregationLimit, b.resFunc())
|
||||
switch b.Temporality {
|
||||
case metricdata.DeltaTemporality:
|
||||
|
|
|
|||
45
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go
generated
vendored
45
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go
generated
vendored
|
|
@ -48,7 +48,12 @@ type expoHistogramDataPoint[N int64 | float64] struct {
|
|||
zeroCount uint64
|
||||
}
|
||||
|
||||
func newExpoHistogramDataPoint[N int64 | float64](attrs attribute.Set, maxSize int, maxScale int32, noMinMax, noSum bool) *expoHistogramDataPoint[N] { // nolint:revive // we need this control flag
|
||||
func newExpoHistogramDataPoint[N int64 | float64](
|
||||
attrs attribute.Set,
|
||||
maxSize int,
|
||||
maxScale int32,
|
||||
noMinMax, noSum bool,
|
||||
) *expoHistogramDataPoint[N] { // nolint:revive // we need this control flag
|
||||
f := math.MaxFloat64
|
||||
ma := N(f) // if N is int64, max will overflow to -9223372036854775808
|
||||
mi := N(-f)
|
||||
|
|
@ -283,7 +288,12 @@ func (b *expoBuckets) downscale(delta int32) {
|
|||
// newExponentialHistogram returns an Aggregator that summarizes a set of
|
||||
// measurements as an exponential histogram. Each histogram is scoped by attributes
|
||||
// and the aggregation cycle the measurements were made in.
|
||||
func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *expoHistogram[N] {
|
||||
func newExponentialHistogram[N int64 | float64](
|
||||
maxSize, maxScale int32,
|
||||
noMinMax, noSum bool,
|
||||
limit int,
|
||||
r func(attribute.Set) FilteredExemplarReservoir[N],
|
||||
) *expoHistogram[N] {
|
||||
return &expoHistogram[N]{
|
||||
noSum: noSum,
|
||||
noMinMax: noMinMax,
|
||||
|
|
@ -314,7 +324,12 @@ type expoHistogram[N int64 | float64] struct {
|
|||
start time.Time
|
||||
}
|
||||
|
||||
func (e *expoHistogram[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
|
||||
func (e *expoHistogram[N]) measure(
|
||||
ctx context.Context,
|
||||
value N,
|
||||
fltrAttr attribute.Set,
|
||||
droppedAttr []attribute.KeyValue,
|
||||
) {
|
||||
// Ignore NaN and infinity.
|
||||
if math.IsInf(float64(value), 0) || math.IsNaN(float64(value)) {
|
||||
return
|
||||
|
|
@ -360,11 +375,19 @@ func (e *expoHistogram[N]) delta(dest *metricdata.Aggregation) int {
|
|||
hDPts[i].ZeroThreshold = 0.0
|
||||
|
||||
hDPts[i].PositiveBucket.Offset = val.posBuckets.startBin
|
||||
hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(val.posBuckets.counts), len(val.posBuckets.counts))
|
||||
hDPts[i].PositiveBucket.Counts = reset(
|
||||
hDPts[i].PositiveBucket.Counts,
|
||||
len(val.posBuckets.counts),
|
||||
len(val.posBuckets.counts),
|
||||
)
|
||||
copy(hDPts[i].PositiveBucket.Counts, val.posBuckets.counts)
|
||||
|
||||
hDPts[i].NegativeBucket.Offset = val.negBuckets.startBin
|
||||
hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(val.negBuckets.counts), len(val.negBuckets.counts))
|
||||
hDPts[i].NegativeBucket.Counts = reset(
|
||||
hDPts[i].NegativeBucket.Counts,
|
||||
len(val.negBuckets.counts),
|
||||
len(val.negBuckets.counts),
|
||||
)
|
||||
copy(hDPts[i].NegativeBucket.Counts, val.negBuckets.counts)
|
||||
|
||||
if !e.noSum {
|
||||
|
|
@ -413,11 +436,19 @@ func (e *expoHistogram[N]) cumulative(dest *metricdata.Aggregation) int {
|
|||
hDPts[i].ZeroThreshold = 0.0
|
||||
|
||||
hDPts[i].PositiveBucket.Offset = val.posBuckets.startBin
|
||||
hDPts[i].PositiveBucket.Counts = reset(hDPts[i].PositiveBucket.Counts, len(val.posBuckets.counts), len(val.posBuckets.counts))
|
||||
hDPts[i].PositiveBucket.Counts = reset(
|
||||
hDPts[i].PositiveBucket.Counts,
|
||||
len(val.posBuckets.counts),
|
||||
len(val.posBuckets.counts),
|
||||
)
|
||||
copy(hDPts[i].PositiveBucket.Counts, val.posBuckets.counts)
|
||||
|
||||
hDPts[i].NegativeBucket.Offset = val.negBuckets.startBin
|
||||
hDPts[i].NegativeBucket.Counts = reset(hDPts[i].NegativeBucket.Counts, len(val.negBuckets.counts), len(val.negBuckets.counts))
|
||||
hDPts[i].NegativeBucket.Counts = reset(
|
||||
hDPts[i].NegativeBucket.Counts,
|
||||
len(val.negBuckets.counts),
|
||||
len(val.negBuckets.counts),
|
||||
)
|
||||
copy(hDPts[i].NegativeBucket.Counts, val.negBuckets.counts)
|
||||
|
||||
if !e.noSum {
|
||||
|
|
|
|||
5
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/filtered_reservoir.go
generated
vendored
5
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/filtered_reservoir.go
generated
vendored
|
|
@ -33,7 +33,10 @@ type filteredExemplarReservoir[N int64 | float64] struct {
|
|||
|
||||
// NewFilteredExemplarReservoir creates a [FilteredExemplarReservoir] which only offers values
|
||||
// that are allowed by the filter.
|
||||
func NewFilteredExemplarReservoir[N int64 | float64](f exemplar.Filter, r exemplar.Reservoir) FilteredExemplarReservoir[N] {
|
||||
func NewFilteredExemplarReservoir[N int64 | float64](
|
||||
f exemplar.Filter,
|
||||
r exemplar.Reservoir,
|
||||
) FilteredExemplarReservoir[N] {
|
||||
return &filteredExemplarReservoir[N]{
|
||||
filter: f,
|
||||
reservoir: r,
|
||||
|
|
|
|||
21
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/histogram.go
generated
vendored
21
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/histogram.go
generated
vendored
|
|
@ -53,7 +53,12 @@ type histValues[N int64 | float64] struct {
|
|||
valuesMu sync.Mutex
|
||||
}
|
||||
|
||||
func newHistValues[N int64 | float64](bounds []float64, noSum bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *histValues[N] {
|
||||
func newHistValues[N int64 | float64](
|
||||
bounds []float64,
|
||||
noSum bool,
|
||||
limit int,
|
||||
r func(attribute.Set) FilteredExemplarReservoir[N],
|
||||
) *histValues[N] {
|
||||
// The responsibility of keeping all buckets correctly associated with the
|
||||
// passed boundaries is ultimately this type's responsibility. Make a copy
|
||||
// here so we can always guarantee this. Or, in the case of failure, have
|
||||
|
|
@ -71,7 +76,12 @@ func newHistValues[N int64 | float64](bounds []float64, noSum bool, limit int, r
|
|||
|
||||
// Aggregate records the measurement value, scoped by attr, and aggregates it
|
||||
// into a histogram.
|
||||
func (s *histValues[N]) measure(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue) {
|
||||
func (s *histValues[N]) measure(
|
||||
ctx context.Context,
|
||||
value N,
|
||||
fltrAttr attribute.Set,
|
||||
droppedAttr []attribute.KeyValue,
|
||||
) {
|
||||
// This search will return an index in the range [0, len(s.bounds)], where
|
||||
// it will return len(s.bounds) if value is greater than the last element
|
||||
// of s.bounds. This aligns with the buckets in that the length of buckets
|
||||
|
|
@ -108,7 +118,12 @@ func (s *histValues[N]) measure(ctx context.Context, value N, fltrAttr attribute
|
|||
|
||||
// newHistogram returns an Aggregator that summarizes a set of measurements as
|
||||
// an histogram.
|
||||
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *histogram[N] {
|
||||
func newHistogram[N int64 | float64](
|
||||
boundaries []float64,
|
||||
noMinMax, noSum bool,
|
||||
limit int,
|
||||
r func(attribute.Set) FilteredExemplarReservoir[N],
|
||||
) *histogram[N] {
|
||||
return &histogram[N]{
|
||||
histValues: newHistValues[N](boundaries, noSum, limit, r),
|
||||
noMinMax: noMinMax,
|
||||
|
|
|
|||
5
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/lastvalue.go
generated
vendored
5
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/lastvalue.go
generated
vendored
|
|
@ -114,7 +114,10 @@ func (s *lastValue[N]) copyDpts(dest *[]metricdata.DataPoint[N], t time.Time) in
|
|||
|
||||
// newPrecomputedLastValue returns an aggregator that summarizes a set of
|
||||
// observations as the last one made.
|
||||
func newPrecomputedLastValue[N int64 | float64](limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *precomputedLastValue[N] {
|
||||
func newPrecomputedLastValue[N int64 | float64](
|
||||
limit int,
|
||||
r func(attribute.Set) FilteredExemplarReservoir[N],
|
||||
) *precomputedLastValue[N] {
|
||||
return &precomputedLastValue[N]{lastValue: newLastValue[N](limit, r)}
|
||||
}
|
||||
|
||||
|
|
|
|||
6
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
generated
vendored
6
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
generated
vendored
|
|
@ -143,7 +143,11 @@ func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int {
|
|||
// newPrecomputedSum returns an aggregator that summarizes a set of
|
||||
// observations as their arithmetic sum. Each sum is scoped by attributes and
|
||||
// the aggregation cycle the measurements were made in.
|
||||
func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *precomputedSum[N] {
|
||||
func newPrecomputedSum[N int64 | float64](
|
||||
monotonic bool,
|
||||
limit int,
|
||||
r func(attribute.Set) FilteredExemplarReservoir[N],
|
||||
) *precomputedSum[N] {
|
||||
return &precomputedSum[N]{
|
||||
valueMap: newValueMap[N](limit, r),
|
||||
monotonic: monotonic,
|
||||
|
|
|
|||
1
vendor/go.opentelemetry.io/otel/sdk/metric/internal/reuse_slice.go
generated
vendored
1
vendor/go.opentelemetry.io/otel/sdk/metric/internal/reuse_slice.go
generated
vendored
|
|
@ -1,6 +1,7 @@
|
|||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
// Package internal provides internal functionality for the metric package.
|
||||
package internal // import "go.opentelemetry.io/otel/sdk/metric/internal"
|
||||
|
||||
// ReuseSlice returns a zeroed view of slice if its capacity is greater than or
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue