mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-31 12:22:24 -05:00 
			
		
		
		
	[chore] bump gruf/go-store to v2 (#953)
* [chore] bump gruf/go-store to v2 * no more boobs
This commit is contained in:
		
					parent
					
						
							
								a9addb59b6
							
						
					
				
			
			
				commit
				
					
						bcb80d3ff4
					
				
			
		
					 105 changed files with 12360 additions and 4859 deletions
				
			
		
							
								
								
									
										793
									
								
								vendor/github.com/klauspost/compress/flate/inflate.go
									
										
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										793
									
								
								vendor/github.com/klauspost/compress/flate/inflate.go
									
										
									
										generated
									
									
										vendored
									
									
										Normal file
									
								
							|  | @ -0,0 +1,793 @@ | |||
| // Copyright 2009 The Go Authors. All rights reserved. | ||||
| // Use of this source code is governed by a BSD-style | ||||
| // license that can be found in the LICENSE file. | ||||
| 
 | ||||
| // Package flate implements the DEFLATE compressed data format, described in | ||||
| // RFC 1951.  The gzip and zlib packages implement access to DEFLATE-based file | ||||
| // formats. | ||||
| package flate | ||||
| 
 | ||||
| import ( | ||||
| 	"bufio" | ||||
| 	"compress/flate" | ||||
| 	"fmt" | ||||
| 	"io" | ||||
| 	"math/bits" | ||||
| 	"sync" | ||||
| ) | ||||
| 
 | ||||
| const ( | ||||
| 	maxCodeLen     = 16 // max length of Huffman code | ||||
| 	maxCodeLenMask = 15 // mask for max length of Huffman code | ||||
| 	// The next three numbers come from the RFC section 3.2.7, with the | ||||
| 	// additional proviso in section 3.2.5 which implies that distance codes | ||||
| 	// 30 and 31 should never occur in compressed data. | ||||
| 	maxNumLit  = 286 | ||||
| 	maxNumDist = 30 | ||||
| 	numCodes   = 19 // number of codes in Huffman meta-code | ||||
| 
 | ||||
| 	debugDecode = false | ||||
| ) | ||||
| 
 | ||||
| // Value of length - 3 and extra bits. | ||||
| type lengthExtra struct { | ||||
| 	length, extra uint8 | ||||
| } | ||||
| 
 | ||||
| var decCodeToLen = [32]lengthExtra{{length: 0x0, extra: 0x0}, {length: 0x1, extra: 0x0}, {length: 0x2, extra: 0x0}, {length: 0x3, extra: 0x0}, {length: 0x4, extra: 0x0}, {length: 0x5, extra: 0x0}, {length: 0x6, extra: 0x0}, {length: 0x7, extra: 0x0}, {length: 0x8, extra: 0x1}, {length: 0xa, extra: 0x1}, {length: 0xc, extra: 0x1}, {length: 0xe, extra: 0x1}, {length: 0x10, extra: 0x2}, {length: 0x14, extra: 0x2}, {length: 0x18, extra: 0x2}, {length: 0x1c, extra: 0x2}, {length: 0x20, extra: 0x3}, {length: 0x28, extra: 0x3}, {length: 0x30, extra: 0x3}, {length: 0x38, extra: 0x3}, {length: 0x40, extra: 0x4}, {length: 0x50, extra: 0x4}, {length: 0x60, extra: 0x4}, {length: 0x70, extra: 0x4}, {length: 0x80, extra: 0x5}, {length: 0xa0, extra: 0x5}, {length: 0xc0, extra: 0x5}, {length: 0xe0, extra: 0x5}, {length: 0xff, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}} | ||||
| 
 | ||||
| var bitMask32 = [32]uint32{ | ||||
| 	0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF, | ||||
| 	0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF, | ||||
| 	0x1ffff, 0x3ffff, 0x7FFFF, 0xfFFFF, 0x1fFFFF, 0x3fFFFF, 0x7fFFFF, 0xffFFFF, | ||||
| 	0x1ffFFFF, 0x3ffFFFF, 0x7ffFFFF, 0xfffFFFF, 0x1fffFFFF, 0x3fffFFFF, 0x7fffFFFF, | ||||
| } // up to 32 bits | ||||
| 
 | ||||
| // Initialize the fixedHuffmanDecoder only once upon first use. | ||||
| var fixedOnce sync.Once | ||||
| var fixedHuffmanDecoder huffmanDecoder | ||||
| 
 | ||||
| // A CorruptInputError reports the presence of corrupt input at a given offset. | ||||
| type CorruptInputError = flate.CorruptInputError | ||||
| 
 | ||||
| // An InternalError reports an error in the flate code itself. | ||||
| type InternalError string | ||||
| 
 | ||||
| func (e InternalError) Error() string { return "flate: internal error: " + string(e) } | ||||
| 
 | ||||
| // A ReadError reports an error encountered while reading input. | ||||
| // | ||||
| // Deprecated: No longer returned. | ||||
| type ReadError = flate.ReadError | ||||
| 
 | ||||
| // A WriteError reports an error encountered while writing output. | ||||
| // | ||||
| // Deprecated: No longer returned. | ||||
| type WriteError = flate.WriteError | ||||
| 
 | ||||
| // Resetter resets a ReadCloser returned by NewReader or NewReaderDict to | ||||
| // to switch to a new underlying Reader. This permits reusing a ReadCloser | ||||
| // instead of allocating a new one. | ||||
| type Resetter interface { | ||||
| 	// Reset discards any buffered data and resets the Resetter as if it was | ||||
| 	// newly initialized with the given reader. | ||||
| 	Reset(r io.Reader, dict []byte) error | ||||
| } | ||||
| 
 | ||||
| // The data structure for decoding Huffman tables is based on that of | ||||
| // zlib. There is a lookup table of a fixed bit width (huffmanChunkBits), | ||||
| // For codes smaller than the table width, there are multiple entries | ||||
| // (each combination of trailing bits has the same value). For codes | ||||
| // larger than the table width, the table contains a link to an overflow | ||||
| // table. The width of each entry in the link table is the maximum code | ||||
| // size minus the chunk width. | ||||
| // | ||||
| // Note that you can do a lookup in the table even without all bits | ||||
| // filled. Since the extra bits are zero, and the DEFLATE Huffman codes | ||||
| // have the property that shorter codes come before longer ones, the | ||||
| // bit length estimate in the result is a lower bound on the actual | ||||
| // number of bits. | ||||
| // | ||||
| // See the following: | ||||
| //	http://www.gzip.org/algorithm.txt | ||||
| 
 | ||||
| // chunk & 15 is number of bits | ||||
| // chunk >> 4 is value, including table link | ||||
| 
 | ||||
| const ( | ||||
| 	huffmanChunkBits  = 9 | ||||
| 	huffmanNumChunks  = 1 << huffmanChunkBits | ||||
| 	huffmanCountMask  = 15 | ||||
| 	huffmanValueShift = 4 | ||||
| ) | ||||
| 
 | ||||
| type huffmanDecoder struct { | ||||
| 	maxRead  int                       // the maximum number of bits we can read and not overread | ||||
| 	chunks   *[huffmanNumChunks]uint16 // chunks as described above | ||||
| 	links    [][]uint16                // overflow links | ||||
| 	linkMask uint32                    // mask the width of the link table | ||||
| } | ||||
| 
 | ||||
| // Initialize Huffman decoding tables from array of code lengths. | ||||
| // Following this function, h is guaranteed to be initialized into a complete | ||||
| // tree (i.e., neither over-subscribed nor under-subscribed). The exception is a | ||||
| // degenerate case where the tree has only a single symbol with length 1. Empty | ||||
| // trees are permitted. | ||||
| func (h *huffmanDecoder) init(lengths []int) bool { | ||||
| 	// Sanity enables additional runtime tests during Huffman | ||||
| 	// table construction. It's intended to be used during | ||||
| 	// development to supplement the currently ad-hoc unit tests. | ||||
| 	const sanity = false | ||||
| 
 | ||||
| 	if h.chunks == nil { | ||||
| 		h.chunks = &[huffmanNumChunks]uint16{} | ||||
| 	} | ||||
| 	if h.maxRead != 0 { | ||||
| 		*h = huffmanDecoder{chunks: h.chunks, links: h.links} | ||||
| 	} | ||||
| 
 | ||||
| 	// Count number of codes of each length, | ||||
| 	// compute maxRead and max length. | ||||
| 	var count [maxCodeLen]int | ||||
| 	var min, max int | ||||
| 	for _, n := range lengths { | ||||
| 		if n == 0 { | ||||
| 			continue | ||||
| 		} | ||||
| 		if min == 0 || n < min { | ||||
| 			min = n | ||||
| 		} | ||||
| 		if n > max { | ||||
| 			max = n | ||||
| 		} | ||||
| 		count[n&maxCodeLenMask]++ | ||||
| 	} | ||||
| 
 | ||||
| 	// Empty tree. The decompressor.huffSym function will fail later if the tree | ||||
| 	// is used. Technically, an empty tree is only valid for the HDIST tree and | ||||
| 	// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree | ||||
| 	// is guaranteed to fail since it will attempt to use the tree to decode the | ||||
| 	// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is | ||||
| 	// guaranteed to fail later since the compressed data section must be | ||||
| 	// composed of at least one symbol (the end-of-block marker). | ||||
| 	if max == 0 { | ||||
| 		return true | ||||
| 	} | ||||
| 
 | ||||
| 	code := 0 | ||||
| 	var nextcode [maxCodeLen]int | ||||
| 	for i := min; i <= max; i++ { | ||||
| 		code <<= 1 | ||||
| 		nextcode[i&maxCodeLenMask] = code | ||||
| 		code += count[i&maxCodeLenMask] | ||||
| 	} | ||||
| 
 | ||||
| 	// Check that the coding is complete (i.e., that we've | ||||
| 	// assigned all 2-to-the-max possible bit sequences). | ||||
| 	// Exception: To be compatible with zlib, we also need to | ||||
| 	// accept degenerate single-code codings. See also | ||||
| 	// TestDegenerateHuffmanCoding. | ||||
| 	if code != 1<<uint(max) && !(code == 1 && max == 1) { | ||||
| 		if debugDecode { | ||||
| 			fmt.Println("coding failed, code, max:", code, max, code == 1<<uint(max), code == 1 && max == 1, "(one should be true)") | ||||
| 		} | ||||
| 		return false | ||||
| 	} | ||||
| 
 | ||||
| 	h.maxRead = min | ||||
| 	chunks := h.chunks[:] | ||||
| 	for i := range chunks { | ||||
| 		chunks[i] = 0 | ||||
| 	} | ||||
| 
 | ||||
| 	if max > huffmanChunkBits { | ||||
| 		numLinks := 1 << (uint(max) - huffmanChunkBits) | ||||
| 		h.linkMask = uint32(numLinks - 1) | ||||
| 
 | ||||
| 		// create link tables | ||||
| 		link := nextcode[huffmanChunkBits+1] >> 1 | ||||
| 		if cap(h.links) < huffmanNumChunks-link { | ||||
| 			h.links = make([][]uint16, huffmanNumChunks-link) | ||||
| 		} else { | ||||
| 			h.links = h.links[:huffmanNumChunks-link] | ||||
| 		} | ||||
| 		for j := uint(link); j < huffmanNumChunks; j++ { | ||||
| 			reverse := int(bits.Reverse16(uint16(j))) | ||||
| 			reverse >>= uint(16 - huffmanChunkBits) | ||||
| 			off := j - uint(link) | ||||
| 			if sanity && h.chunks[reverse] != 0 { | ||||
| 				panic("impossible: overwriting existing chunk") | ||||
| 			} | ||||
| 			h.chunks[reverse] = uint16(off<<huffmanValueShift | (huffmanChunkBits + 1)) | ||||
| 			if cap(h.links[off]) < numLinks { | ||||
| 				h.links[off] = make([]uint16, numLinks) | ||||
| 			} else { | ||||
| 				links := h.links[off][:0] | ||||
| 				h.links[off] = links[:numLinks] | ||||
| 			} | ||||
| 		} | ||||
| 	} else { | ||||
| 		h.links = h.links[:0] | ||||
| 	} | ||||
| 
 | ||||
| 	for i, n := range lengths { | ||||
| 		if n == 0 { | ||||
| 			continue | ||||
| 		} | ||||
| 		code := nextcode[n] | ||||
| 		nextcode[n]++ | ||||
| 		chunk := uint16(i<<huffmanValueShift | n) | ||||
| 		reverse := int(bits.Reverse16(uint16(code))) | ||||
| 		reverse >>= uint(16 - n) | ||||
| 		if n <= huffmanChunkBits { | ||||
| 			for off := reverse; off < len(h.chunks); off += 1 << uint(n) { | ||||
| 				// We should never need to overwrite | ||||
| 				// an existing chunk. Also, 0 is | ||||
| 				// never a valid chunk, because the | ||||
| 				// lower 4 "count" bits should be | ||||
| 				// between 1 and 15. | ||||
| 				if sanity && h.chunks[off] != 0 { | ||||
| 					panic("impossible: overwriting existing chunk") | ||||
| 				} | ||||
| 				h.chunks[off] = chunk | ||||
| 			} | ||||
| 		} else { | ||||
| 			j := reverse & (huffmanNumChunks - 1) | ||||
| 			if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 { | ||||
| 				// Longer codes should have been | ||||
| 				// associated with a link table above. | ||||
| 				panic("impossible: not an indirect chunk") | ||||
| 			} | ||||
| 			value := h.chunks[j] >> huffmanValueShift | ||||
| 			linktab := h.links[value] | ||||
| 			reverse >>= huffmanChunkBits | ||||
| 			for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) { | ||||
| 				if sanity && linktab[off] != 0 { | ||||
| 					panic("impossible: overwriting existing chunk") | ||||
| 				} | ||||
| 				linktab[off] = chunk | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
| 
 | ||||
| 	if sanity { | ||||
| 		// Above we've sanity checked that we never overwrote | ||||
| 		// an existing entry. Here we additionally check that | ||||
| 		// we filled the tables completely. | ||||
| 		for i, chunk := range h.chunks { | ||||
| 			if chunk == 0 { | ||||
| 				// As an exception, in the degenerate | ||||
| 				// single-code case, we allow odd | ||||
| 				// chunks to be missing. | ||||
| 				if code == 1 && i%2 == 1 { | ||||
| 					continue | ||||
| 				} | ||||
| 				panic("impossible: missing chunk") | ||||
| 			} | ||||
| 		} | ||||
| 		for _, linktab := range h.links { | ||||
| 			for _, chunk := range linktab { | ||||
| 				if chunk == 0 { | ||||
| 					panic("impossible: missing chunk") | ||||
| 				} | ||||
| 			} | ||||
| 		} | ||||
| 	} | ||||
| 
 | ||||
| 	return true | ||||
| } | ||||
| 
 | ||||
| // The actual read interface needed by NewReader. | ||||
| // If the passed in io.Reader does not also have ReadByte, | ||||
| // the NewReader will introduce its own buffering. | ||||
| type Reader interface { | ||||
| 	io.Reader | ||||
| 	io.ByteReader | ||||
| } | ||||
| 
 | ||||
| // Decompress state. | ||||
| type decompressor struct { | ||||
| 	// Input source. | ||||
| 	r       Reader | ||||
| 	roffset int64 | ||||
| 
 | ||||
| 	// Huffman decoders for literal/length, distance. | ||||
| 	h1, h2 huffmanDecoder | ||||
| 
 | ||||
| 	// Length arrays used to define Huffman codes. | ||||
| 	bits     *[maxNumLit + maxNumDist]int | ||||
| 	codebits *[numCodes]int | ||||
| 
 | ||||
| 	// Output history, buffer. | ||||
| 	dict dictDecoder | ||||
| 
 | ||||
| 	// Next step in the decompression, | ||||
| 	// and decompression state. | ||||
| 	step      func(*decompressor) | ||||
| 	stepState int | ||||
| 	err       error | ||||
| 	toRead    []byte | ||||
| 	hl, hd    *huffmanDecoder | ||||
| 	copyLen   int | ||||
| 	copyDist  int | ||||
| 
 | ||||
| 	// Temporary buffer (avoids repeated allocation). | ||||
| 	buf [4]byte | ||||
| 
 | ||||
| 	// Input bits, in top of b. | ||||
| 	b uint32 | ||||
| 
 | ||||
| 	nb    uint | ||||
| 	final bool | ||||
| } | ||||
| 
 | ||||
| func (f *decompressor) nextBlock() { | ||||
| 	for f.nb < 1+2 { | ||||
| 		if f.err = f.moreBits(); f.err != nil { | ||||
| 			return | ||||
| 		} | ||||
| 	} | ||||
| 	f.final = f.b&1 == 1 | ||||
| 	f.b >>= 1 | ||||
| 	typ := f.b & 3 | ||||
| 	f.b >>= 2 | ||||
| 	f.nb -= 1 + 2 | ||||
| 	switch typ { | ||||
| 	case 0: | ||||
| 		f.dataBlock() | ||||
| 		if debugDecode { | ||||
| 			fmt.Println("stored block") | ||||
| 		} | ||||
| 	case 1: | ||||
| 		// compressed, fixed Huffman tables | ||||
| 		f.hl = &fixedHuffmanDecoder | ||||
| 		f.hd = nil | ||||
| 		f.huffmanBlockDecoder()() | ||||
| 		if debugDecode { | ||||
| 			fmt.Println("predefinied huffman block") | ||||
| 		} | ||||
| 	case 2: | ||||
| 		// compressed, dynamic Huffman tables | ||||
| 		if f.err = f.readHuffman(); f.err != nil { | ||||
| 			break | ||||
| 		} | ||||
| 		f.hl = &f.h1 | ||||
| 		f.hd = &f.h2 | ||||
| 		f.huffmanBlockDecoder()() | ||||
| 		if debugDecode { | ||||
| 			fmt.Println("dynamic huffman block") | ||||
| 		} | ||||
| 	default: | ||||
| 		// 3 is reserved. | ||||
| 		if debugDecode { | ||||
| 			fmt.Println("reserved data block encountered") | ||||
| 		} | ||||
| 		f.err = CorruptInputError(f.roffset) | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| func (f *decompressor) Read(b []byte) (int, error) { | ||||
| 	for { | ||||
| 		if len(f.toRead) > 0 { | ||||
| 			n := copy(b, f.toRead) | ||||
| 			f.toRead = f.toRead[n:] | ||||
| 			if len(f.toRead) == 0 { | ||||
| 				return n, f.err | ||||
| 			} | ||||
| 			return n, nil | ||||
| 		} | ||||
| 		if f.err != nil { | ||||
| 			return 0, f.err | ||||
| 		} | ||||
| 		f.step(f) | ||||
| 		if f.err != nil && len(f.toRead) == 0 { | ||||
| 			f.toRead = f.dict.readFlush() // Flush what's left in case of error | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // Support the io.WriteTo interface for io.Copy and friends. | ||||
| func (f *decompressor) WriteTo(w io.Writer) (int64, error) { | ||||
| 	total := int64(0) | ||||
| 	flushed := false | ||||
| 	for { | ||||
| 		if len(f.toRead) > 0 { | ||||
| 			n, err := w.Write(f.toRead) | ||||
| 			total += int64(n) | ||||
| 			if err != nil { | ||||
| 				f.err = err | ||||
| 				return total, err | ||||
| 			} | ||||
| 			if n != len(f.toRead) { | ||||
| 				return total, io.ErrShortWrite | ||||
| 			} | ||||
| 			f.toRead = f.toRead[:0] | ||||
| 		} | ||||
| 		if f.err != nil && flushed { | ||||
| 			if f.err == io.EOF { | ||||
| 				return total, nil | ||||
| 			} | ||||
| 			return total, f.err | ||||
| 		} | ||||
| 		if f.err == nil { | ||||
| 			f.step(f) | ||||
| 		} | ||||
| 		if len(f.toRead) == 0 && f.err != nil && !flushed { | ||||
| 			f.toRead = f.dict.readFlush() // Flush what's left in case of error | ||||
| 			flushed = true | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| func (f *decompressor) Close() error { | ||||
| 	if f.err == io.EOF { | ||||
| 		return nil | ||||
| 	} | ||||
| 	return f.err | ||||
| } | ||||
| 
 | ||||
| // RFC 1951 section 3.2.7. | ||||
| // Compression with dynamic Huffman codes | ||||
| 
 | ||||
| var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15} | ||||
| 
 | ||||
| func (f *decompressor) readHuffman() error { | ||||
| 	// HLIT[5], HDIST[5], HCLEN[4]. | ||||
| 	for f.nb < 5+5+4 { | ||||
| 		if err := f.moreBits(); err != nil { | ||||
| 			return err | ||||
| 		} | ||||
| 	} | ||||
| 	nlit := int(f.b&0x1F) + 257 | ||||
| 	if nlit > maxNumLit { | ||||
| 		if debugDecode { | ||||
| 			fmt.Println("nlit > maxNumLit", nlit) | ||||
| 		} | ||||
| 		return CorruptInputError(f.roffset) | ||||
| 	} | ||||
| 	f.b >>= 5 | ||||
| 	ndist := int(f.b&0x1F) + 1 | ||||
| 	if ndist > maxNumDist { | ||||
| 		if debugDecode { | ||||
| 			fmt.Println("ndist > maxNumDist", ndist) | ||||
| 		} | ||||
| 		return CorruptInputError(f.roffset) | ||||
| 	} | ||||
| 	f.b >>= 5 | ||||
| 	nclen := int(f.b&0xF) + 4 | ||||
| 	// numCodes is 19, so nclen is always valid. | ||||
| 	f.b >>= 4 | ||||
| 	f.nb -= 5 + 5 + 4 | ||||
| 
 | ||||
| 	// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order. | ||||
| 	for i := 0; i < nclen; i++ { | ||||
| 		for f.nb < 3 { | ||||
| 			if err := f.moreBits(); err != nil { | ||||
| 				return err | ||||
| 			} | ||||
| 		} | ||||
| 		f.codebits[codeOrder[i]] = int(f.b & 0x7) | ||||
| 		f.b >>= 3 | ||||
| 		f.nb -= 3 | ||||
| 	} | ||||
| 	for i := nclen; i < len(codeOrder); i++ { | ||||
| 		f.codebits[codeOrder[i]] = 0 | ||||
| 	} | ||||
| 	if !f.h1.init(f.codebits[0:]) { | ||||
| 		if debugDecode { | ||||
| 			fmt.Println("init codebits failed") | ||||
| 		} | ||||
| 		return CorruptInputError(f.roffset) | ||||
| 	} | ||||
| 
 | ||||
| 	// HLIT + 257 code lengths, HDIST + 1 code lengths, | ||||
| 	// using the code length Huffman code. | ||||
| 	for i, n := 0, nlit+ndist; i < n; { | ||||
| 		x, err := f.huffSym(&f.h1) | ||||
| 		if err != nil { | ||||
| 			return err | ||||
| 		} | ||||
| 		if x < 16 { | ||||
| 			// Actual length. | ||||
| 			f.bits[i] = x | ||||
| 			i++ | ||||
| 			continue | ||||
| 		} | ||||
| 		// Repeat previous length or zero. | ||||
| 		var rep int | ||||
| 		var nb uint | ||||
| 		var b int | ||||
| 		switch x { | ||||
| 		default: | ||||
| 			return InternalError("unexpected length code") | ||||
| 		case 16: | ||||
| 			rep = 3 | ||||
| 			nb = 2 | ||||
| 			if i == 0 { | ||||
| 				if debugDecode { | ||||
| 					fmt.Println("i==0") | ||||
| 				} | ||||
| 				return CorruptInputError(f.roffset) | ||||
| 			} | ||||
| 			b = f.bits[i-1] | ||||
| 		case 17: | ||||
| 			rep = 3 | ||||
| 			nb = 3 | ||||
| 			b = 0 | ||||
| 		case 18: | ||||
| 			rep = 11 | ||||
| 			nb = 7 | ||||
| 			b = 0 | ||||
| 		} | ||||
| 		for f.nb < nb { | ||||
| 			if err := f.moreBits(); err != nil { | ||||
| 				if debugDecode { | ||||
| 					fmt.Println("morebits:", err) | ||||
| 				} | ||||
| 				return err | ||||
| 			} | ||||
| 		} | ||||
| 		rep += int(f.b & uint32(1<<(nb®SizeMaskUint32)-1)) | ||||
| 		f.b >>= nb & regSizeMaskUint32 | ||||
| 		f.nb -= nb | ||||
| 		if i+rep > n { | ||||
| 			if debugDecode { | ||||
| 				fmt.Println("i+rep > n", i, rep, n) | ||||
| 			} | ||||
| 			return CorruptInputError(f.roffset) | ||||
| 		} | ||||
| 		for j := 0; j < rep; j++ { | ||||
| 			f.bits[i] = b | ||||
| 			i++ | ||||
| 		} | ||||
| 	} | ||||
| 
 | ||||
| 	if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) { | ||||
| 		if debugDecode { | ||||
| 			fmt.Println("init2 failed") | ||||
| 		} | ||||
| 		return CorruptInputError(f.roffset) | ||||
| 	} | ||||
| 
 | ||||
| 	// As an optimization, we can initialize the maxRead bits to read at a time | ||||
| 	// for the HLIT tree to the length of the EOB marker since we know that | ||||
| 	// every block must terminate with one. This preserves the property that | ||||
| 	// we never read any extra bytes after the end of the DEFLATE stream. | ||||
| 	if f.h1.maxRead < f.bits[endBlockMarker] { | ||||
| 		f.h1.maxRead = f.bits[endBlockMarker] | ||||
| 	} | ||||
| 	if !f.final { | ||||
| 		// If not the final block, the smallest block possible is | ||||
| 		// a predefined table, BTYPE=01, with a single EOB marker. | ||||
| 		// This will take up 3 + 7 bits. | ||||
| 		f.h1.maxRead += 10 | ||||
| 	} | ||||
| 
 | ||||
| 	return nil | ||||
| } | ||||
| 
 | ||||
| // Copy a single uncompressed data block from input to output. | ||||
| func (f *decompressor) dataBlock() { | ||||
| 	// Uncompressed. | ||||
| 	// Discard current half-byte. | ||||
| 	left := (f.nb) & 7 | ||||
| 	f.nb -= left | ||||
| 	f.b >>= left | ||||
| 
 | ||||
| 	offBytes := f.nb >> 3 | ||||
| 	// Unfilled values will be overwritten. | ||||
| 	f.buf[0] = uint8(f.b) | ||||
| 	f.buf[1] = uint8(f.b >> 8) | ||||
| 	f.buf[2] = uint8(f.b >> 16) | ||||
| 	f.buf[3] = uint8(f.b >> 24) | ||||
| 
 | ||||
| 	f.roffset += int64(offBytes) | ||||
| 	f.nb, f.b = 0, 0 | ||||
| 
 | ||||
| 	// Length then ones-complement of length. | ||||
| 	nr, err := io.ReadFull(f.r, f.buf[offBytes:4]) | ||||
| 	f.roffset += int64(nr) | ||||
| 	if err != nil { | ||||
| 		f.err = noEOF(err) | ||||
| 		return | ||||
| 	} | ||||
| 	n := uint16(f.buf[0]) | uint16(f.buf[1])<<8 | ||||
| 	nn := uint16(f.buf[2]) | uint16(f.buf[3])<<8 | ||||
| 	if nn != ^n { | ||||
| 		if debugDecode { | ||||
| 			ncomp := ^n | ||||
| 			fmt.Println("uint16(nn) != uint16(^n)", nn, ncomp) | ||||
| 		} | ||||
| 		f.err = CorruptInputError(f.roffset) | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	if n == 0 { | ||||
| 		f.toRead = f.dict.readFlush() | ||||
| 		f.finishBlock() | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	f.copyLen = int(n) | ||||
| 	f.copyData() | ||||
| } | ||||
| 
 | ||||
| // copyData copies f.copyLen bytes from the underlying reader into f.hist. | ||||
| // It pauses for reads when f.hist is full. | ||||
| func (f *decompressor) copyData() { | ||||
| 	buf := f.dict.writeSlice() | ||||
| 	if len(buf) > f.copyLen { | ||||
| 		buf = buf[:f.copyLen] | ||||
| 	} | ||||
| 
 | ||||
| 	cnt, err := io.ReadFull(f.r, buf) | ||||
| 	f.roffset += int64(cnt) | ||||
| 	f.copyLen -= cnt | ||||
| 	f.dict.writeMark(cnt) | ||||
| 	if err != nil { | ||||
| 		f.err = noEOF(err) | ||||
| 		return | ||||
| 	} | ||||
| 
 | ||||
| 	if f.dict.availWrite() == 0 || f.copyLen > 0 { | ||||
| 		f.toRead = f.dict.readFlush() | ||||
| 		f.step = (*decompressor).copyData | ||||
| 		return | ||||
| 	} | ||||
| 	f.finishBlock() | ||||
| } | ||||
| 
 | ||||
| func (f *decompressor) finishBlock() { | ||||
| 	if f.final { | ||||
| 		if f.dict.availRead() > 0 { | ||||
| 			f.toRead = f.dict.readFlush() | ||||
| 		} | ||||
| 		f.err = io.EOF | ||||
| 	} | ||||
| 	f.step = (*decompressor).nextBlock | ||||
| } | ||||
| 
 | ||||
| // noEOF returns err, unless err == io.EOF, in which case it returns io.ErrUnexpectedEOF. | ||||
| func noEOF(e error) error { | ||||
| 	if e == io.EOF { | ||||
| 		return io.ErrUnexpectedEOF | ||||
| 	} | ||||
| 	return e | ||||
| } | ||||
| 
 | ||||
| func (f *decompressor) moreBits() error { | ||||
| 	c, err := f.r.ReadByte() | ||||
| 	if err != nil { | ||||
| 		return noEOF(err) | ||||
| 	} | ||||
| 	f.roffset++ | ||||
| 	f.b |= uint32(c) << (f.nb & regSizeMaskUint32) | ||||
| 	f.nb += 8 | ||||
| 	return nil | ||||
| } | ||||
| 
 | ||||
| // Read the next Huffman-encoded symbol from f according to h. | ||||
| func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) { | ||||
| 	// Since a huffmanDecoder can be empty or be composed of a degenerate tree | ||||
| 	// with single element, huffSym must error on these two edge cases. In both | ||||
| 	// cases, the chunks slice will be 0 for the invalid sequence, leading it | ||||
| 	// satisfy the n == 0 check below. | ||||
| 	n := uint(h.maxRead) | ||||
| 	// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers, | ||||
| 	// but is smart enough to keep local variables in registers, so use nb and b, | ||||
| 	// inline call to moreBits and reassign b,nb back to f on return. | ||||
| 	nb, b := f.nb, f.b | ||||
| 	for { | ||||
| 		for nb < n { | ||||
| 			c, err := f.r.ReadByte() | ||||
| 			if err != nil { | ||||
| 				f.b = b | ||||
| 				f.nb = nb | ||||
| 				return 0, noEOF(err) | ||||
| 			} | ||||
| 			f.roffset++ | ||||
| 			b |= uint32(c) << (nb & regSizeMaskUint32) | ||||
| 			nb += 8 | ||||
| 		} | ||||
| 		chunk := h.chunks[b&(huffmanNumChunks-1)] | ||||
| 		n = uint(chunk & huffmanCountMask) | ||||
| 		if n > huffmanChunkBits { | ||||
| 			chunk = h.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&h.linkMask] | ||||
| 			n = uint(chunk & huffmanCountMask) | ||||
| 		} | ||||
| 		if n <= nb { | ||||
| 			if n == 0 { | ||||
| 				f.b = b | ||||
| 				f.nb = nb | ||||
| 				if debugDecode { | ||||
| 					fmt.Println("huffsym: n==0") | ||||
| 				} | ||||
| 				f.err = CorruptInputError(f.roffset) | ||||
| 				return 0, f.err | ||||
| 			} | ||||
| 			f.b = b >> (n & regSizeMaskUint32) | ||||
| 			f.nb = nb - n | ||||
| 			return int(chunk >> huffmanValueShift), nil | ||||
| 		} | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| func makeReader(r io.Reader) Reader { | ||||
| 	if rr, ok := r.(Reader); ok { | ||||
| 		return rr | ||||
| 	} | ||||
| 	return bufio.NewReader(r) | ||||
| } | ||||
| 
 | ||||
| func fixedHuffmanDecoderInit() { | ||||
| 	fixedOnce.Do(func() { | ||||
| 		// These come from the RFC section 3.2.6. | ||||
| 		var bits [288]int | ||||
| 		for i := 0; i < 144; i++ { | ||||
| 			bits[i] = 8 | ||||
| 		} | ||||
| 		for i := 144; i < 256; i++ { | ||||
| 			bits[i] = 9 | ||||
| 		} | ||||
| 		for i := 256; i < 280; i++ { | ||||
| 			bits[i] = 7 | ||||
| 		} | ||||
| 		for i := 280; i < 288; i++ { | ||||
| 			bits[i] = 8 | ||||
| 		} | ||||
| 		fixedHuffmanDecoder.init(bits[:]) | ||||
| 	}) | ||||
| } | ||||
| 
 | ||||
| func (f *decompressor) Reset(r io.Reader, dict []byte) error { | ||||
| 	*f = decompressor{ | ||||
| 		r:        makeReader(r), | ||||
| 		bits:     f.bits, | ||||
| 		codebits: f.codebits, | ||||
| 		h1:       f.h1, | ||||
| 		h2:       f.h2, | ||||
| 		dict:     f.dict, | ||||
| 		step:     (*decompressor).nextBlock, | ||||
| 	} | ||||
| 	f.dict.init(maxMatchOffset, dict) | ||||
| 	return nil | ||||
| } | ||||
| 
 | ||||
| // NewReader returns a new ReadCloser that can be used | ||||
| // to read the uncompressed version of r. | ||||
| // If r does not also implement io.ByteReader, | ||||
| // the decompressor may read more data than necessary from r. | ||||
| // It is the caller's responsibility to call Close on the ReadCloser | ||||
| // when finished reading. | ||||
| // | ||||
| // The ReadCloser returned by NewReader also implements Resetter. | ||||
| func NewReader(r io.Reader) io.ReadCloser { | ||||
| 	fixedHuffmanDecoderInit() | ||||
| 
 | ||||
| 	var f decompressor | ||||
| 	f.r = makeReader(r) | ||||
| 	f.bits = new([maxNumLit + maxNumDist]int) | ||||
| 	f.codebits = new([numCodes]int) | ||||
| 	f.step = (*decompressor).nextBlock | ||||
| 	f.dict.init(maxMatchOffset, nil) | ||||
| 	return &f | ||||
| } | ||||
| 
 | ||||
| // NewReaderDict is like NewReader but initializes the reader | ||||
| // with a preset dictionary. The returned Reader behaves as if | ||||
| // the uncompressed data stream started with the given dictionary, | ||||
| // which has already been read. NewReaderDict is typically used | ||||
| // to read data compressed by NewWriterDict. | ||||
| // | ||||
| // The ReadCloser returned by NewReader also implements Resetter. | ||||
| func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser { | ||||
| 	fixedHuffmanDecoderInit() | ||||
| 
 | ||||
| 	var f decompressor | ||||
| 	f.r = makeReader(r) | ||||
| 	f.bits = new([maxNumLit + maxNumDist]int) | ||||
| 	f.codebits = new([numCodes]int) | ||||
| 	f.step = (*decompressor).nextBlock | ||||
| 	f.dict.init(maxMatchOffset, dict) | ||||
| 	return &f | ||||
| } | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue