mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-31 03:32:25 -05:00 
			
		
		
		
	[feature] support processing of (many) more media types (#3090)
* initial work replacing our media decoding / encoding pipeline with ffprobe + ffmpeg
* specify the video codec to use when generating static image from emoji
* update go-storage library (fixes incompatibility after updating go-iotools)
* maintain image aspect ratio when generating a thumbnail for it
* update readme to show go-ffmpreg
* fix a bunch of media tests, move filesize checking to callers of media manager for more flexibility
* remove extra debug from error message
* fix up incorrect function signatures
* update PutFile to just use regular file copy, as changes are file is on separate partition
* fix remaining tests, remove some unneeded tests now we're working with ffmpeg/ffprobe
* update more tests, add more code comments
* add utilities to generate processed emoji / media outputs
* fix remaining tests
* add test for opus media file, add license header to utility cmds
* limit the number of concurrently available ffmpeg / ffprobe instances
* reduce number of instances
* further reduce number of instances
* fix envparsing test with configuration variables
* update docs and configuration with new media-{local,remote}-max-size variables
	
	
This commit is contained in:
		
					parent
					
						
							
								5bc567196b
							
						
					
				
			
			
				commit
				
					
						cde2fb6244
					
				
			
		
					 376 changed files with 8026 additions and 54091 deletions
				
			
		
							
								
								
									
										183
									
								
								vendor/github.com/golang/geo/r3/vector.go
									
										
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										183
									
								
								vendor/github.com/golang/geo/r3/vector.go
									
										
									
										generated
									
									
										vendored
									
									
								
							|  | @ -1,183 +0,0 @@ | |||
| // Copyright 2014 Google Inc. All rights reserved. | ||||
| // | ||||
| // Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| // you may not use this file except in compliance with the License. | ||||
| // You may obtain a copy of the License at | ||||
| // | ||||
| //     http://www.apache.org/licenses/LICENSE-2.0 | ||||
| // | ||||
| // Unless required by applicable law or agreed to in writing, software | ||||
| // distributed under the License is distributed on an "AS IS" BASIS, | ||||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| // See the License for the specific language governing permissions and | ||||
| // limitations under the License. | ||||
| 
 | ||||
| package r3 | ||||
| 
 | ||||
| import ( | ||||
| 	"fmt" | ||||
| 	"math" | ||||
| 
 | ||||
| 	"github.com/golang/geo/s1" | ||||
| ) | ||||
| 
 | ||||
| // Vector represents a point in ℝ³. | ||||
| type Vector struct { | ||||
| 	X, Y, Z float64 | ||||
| } | ||||
| 
 | ||||
| // ApproxEqual reports whether v and ov are equal within a small epsilon. | ||||
| func (v Vector) ApproxEqual(ov Vector) bool { | ||||
| 	const epsilon = 1e-16 | ||||
| 	return math.Abs(v.X-ov.X) < epsilon && math.Abs(v.Y-ov.Y) < epsilon && math.Abs(v.Z-ov.Z) < epsilon | ||||
| } | ||||
| 
 | ||||
| func (v Vector) String() string { return fmt.Sprintf("(%0.24f, %0.24f, %0.24f)", v.X, v.Y, v.Z) } | ||||
| 
 | ||||
| // Norm returns the vector's norm. | ||||
| func (v Vector) Norm() float64 { return math.Sqrt(v.Dot(v)) } | ||||
| 
 | ||||
| // Norm2 returns the square of the norm. | ||||
| func (v Vector) Norm2() float64 { return v.Dot(v) } | ||||
| 
 | ||||
| // Normalize returns a unit vector in the same direction as v. | ||||
| func (v Vector) Normalize() Vector { | ||||
| 	n2 := v.Norm2() | ||||
| 	if n2 == 0 { | ||||
| 		return Vector{0, 0, 0} | ||||
| 	} | ||||
| 	return v.Mul(1 / math.Sqrt(n2)) | ||||
| } | ||||
| 
 | ||||
| // IsUnit returns whether this vector is of approximately unit length. | ||||
| func (v Vector) IsUnit() bool { | ||||
| 	const epsilon = 5e-14 | ||||
| 	return math.Abs(v.Norm2()-1) <= epsilon | ||||
| } | ||||
| 
 | ||||
| // Abs returns the vector with nonnegative components. | ||||
| func (v Vector) Abs() Vector { return Vector{math.Abs(v.X), math.Abs(v.Y), math.Abs(v.Z)} } | ||||
| 
 | ||||
| // Add returns the standard vector sum of v and ov. | ||||
| func (v Vector) Add(ov Vector) Vector { return Vector{v.X + ov.X, v.Y + ov.Y, v.Z + ov.Z} } | ||||
| 
 | ||||
| // Sub returns the standard vector difference of v and ov. | ||||
| func (v Vector) Sub(ov Vector) Vector { return Vector{v.X - ov.X, v.Y - ov.Y, v.Z - ov.Z} } | ||||
| 
 | ||||
| // Mul returns the standard scalar product of v and m. | ||||
| func (v Vector) Mul(m float64) Vector { return Vector{m * v.X, m * v.Y, m * v.Z} } | ||||
| 
 | ||||
| // Dot returns the standard dot product of v and ov. | ||||
| func (v Vector) Dot(ov Vector) float64 { return v.X*ov.X + v.Y*ov.Y + v.Z*ov.Z } | ||||
| 
 | ||||
| // Cross returns the standard cross product of v and ov. | ||||
| func (v Vector) Cross(ov Vector) Vector { | ||||
| 	return Vector{ | ||||
| 		v.Y*ov.Z - v.Z*ov.Y, | ||||
| 		v.Z*ov.X - v.X*ov.Z, | ||||
| 		v.X*ov.Y - v.Y*ov.X, | ||||
| 	} | ||||
| } | ||||
| 
 | ||||
| // Distance returns the Euclidean distance between v and ov. | ||||
| func (v Vector) Distance(ov Vector) float64 { return v.Sub(ov).Norm() } | ||||
| 
 | ||||
| // Angle returns the angle between v and ov. | ||||
| func (v Vector) Angle(ov Vector) s1.Angle { | ||||
| 	return s1.Angle(math.Atan2(v.Cross(ov).Norm(), v.Dot(ov))) * s1.Radian | ||||
| } | ||||
| 
 | ||||
| // Axis enumerates the 3 axes of ℝ³. | ||||
| type Axis int | ||||
| 
 | ||||
| // The three axes of ℝ³. | ||||
| const ( | ||||
| 	XAxis Axis = iota | ||||
| 	YAxis | ||||
| 	ZAxis | ||||
| ) | ||||
| 
 | ||||
| // Ortho returns a unit vector that is orthogonal to v. | ||||
| // Ortho(-v) = -Ortho(v) for all v. | ||||
| func (v Vector) Ortho() Vector { | ||||
| 	ov := Vector{0.012, 0.0053, 0.00457} | ||||
| 	switch v.LargestComponent() { | ||||
| 	case XAxis: | ||||
| 		ov.Z = 1 | ||||
| 	case YAxis: | ||||
| 		ov.X = 1 | ||||
| 	default: | ||||
| 		ov.Y = 1 | ||||
| 	} | ||||
| 	return v.Cross(ov).Normalize() | ||||
| } | ||||
| 
 | ||||
| // LargestComponent returns the axis that represents the largest component in this vector. | ||||
| func (v Vector) LargestComponent() Axis { | ||||
| 	t := v.Abs() | ||||
| 
 | ||||
| 	if t.X > t.Y { | ||||
| 		if t.X > t.Z { | ||||
| 			return XAxis | ||||
| 		} | ||||
| 		return ZAxis | ||||
| 	} | ||||
| 	if t.Y > t.Z { | ||||
| 		return YAxis | ||||
| 	} | ||||
| 	return ZAxis | ||||
| } | ||||
| 
 | ||||
| // SmallestComponent returns the axis that represents the smallest component in this vector. | ||||
| func (v Vector) SmallestComponent() Axis { | ||||
| 	t := v.Abs() | ||||
| 
 | ||||
| 	if t.X < t.Y { | ||||
| 		if t.X < t.Z { | ||||
| 			return XAxis | ||||
| 		} | ||||
| 		return ZAxis | ||||
| 	} | ||||
| 	if t.Y < t.Z { | ||||
| 		return YAxis | ||||
| 	} | ||||
| 	return ZAxis | ||||
| } | ||||
| 
 | ||||
| // Cmp compares v and ov lexicographically and returns: | ||||
| // | ||||
| //   -1 if v <  ov | ||||
| //    0 if v == ov | ||||
| //   +1 if v >  ov | ||||
| // | ||||
| // This method is based on C++'s std::lexicographical_compare. Two entities | ||||
| // are compared element by element with the given operator. The first mismatch | ||||
| // defines which is less (or greater) than the other. If both have equivalent | ||||
| // values they are lexicographically equal. | ||||
| func (v Vector) Cmp(ov Vector) int { | ||||
| 	if v.X < ov.X { | ||||
| 		return -1 | ||||
| 	} | ||||
| 	if v.X > ov.X { | ||||
| 		return 1 | ||||
| 	} | ||||
| 
 | ||||
| 	// First elements were the same, try the next. | ||||
| 	if v.Y < ov.Y { | ||||
| 		return -1 | ||||
| 	} | ||||
| 	if v.Y > ov.Y { | ||||
| 		return 1 | ||||
| 	} | ||||
| 
 | ||||
| 	// Second elements were the same return the final compare. | ||||
| 	if v.Z < ov.Z { | ||||
| 		return -1 | ||||
| 	} | ||||
| 	if v.Z > ov.Z { | ||||
| 		return 1 | ||||
| 	} | ||||
| 
 | ||||
| 	// Both are equal | ||||
| 	return 0 | ||||
| } | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue