mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-30 22:12:25 -05:00 
			
		
		
		
	[feature] support processing of (many) more media types (#3090)
* initial work replacing our media decoding / encoding pipeline with ffprobe + ffmpeg
* specify the video codec to use when generating static image from emoji
* update go-storage library (fixes incompatibility after updating go-iotools)
* maintain image aspect ratio when generating a thumbnail for it
* update readme to show go-ffmpreg
* fix a bunch of media tests, move filesize checking to callers of media manager for more flexibility
* remove extra debug from error message
* fix up incorrect function signatures
* update PutFile to just use regular file copy, as changes are file is on separate partition
* fix remaining tests, remove some unneeded tests now we're working with ffmpeg/ffprobe
* update more tests, add more code comments
* add utilities to generate processed emoji / media outputs
* fix remaining tests
* add test for opus media file, add license header to utility cmds
* limit the number of concurrently available ffmpeg / ffprobe instances
* reduce number of instances
* further reduce number of instances
* fix envparsing test with configuration variables
* update docs and configuration with new media-{local,remote}-max-size variables
	
	
This commit is contained in:
		
					parent
					
						
							
								5bc567196b
							
						
					
				
			
			
				commit
				
					
						cde2fb6244
					
				
			
		
					 376 changed files with 8026 additions and 54091 deletions
				
			
		
							
								
								
									
										164
									
								
								vendor/github.com/golang/geo/s2/metric.go
									
										
									
										generated
									
									
										vendored
									
									
								
							
							
						
						
									
										164
									
								
								vendor/github.com/golang/geo/s2/metric.go
									
										
									
										generated
									
									
										vendored
									
									
								
							|  | @ -1,164 +0,0 @@ | |||
| // Copyright 2015 Google Inc. All rights reserved. | ||||
| // | ||||
| // Licensed under the Apache License, Version 2.0 (the "License"); | ||||
| // you may not use this file except in compliance with the License. | ||||
| // You may obtain a copy of the License at | ||||
| // | ||||
| //     http://www.apache.org/licenses/LICENSE-2.0 | ||||
| // | ||||
| // Unless required by applicable law or agreed to in writing, software | ||||
| // distributed under the License is distributed on an "AS IS" BASIS, | ||||
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||
| // See the License for the specific language governing permissions and | ||||
| // limitations under the License. | ||||
| 
 | ||||
| package s2 | ||||
| 
 | ||||
| // This file implements functions for various S2 measurements. | ||||
| 
 | ||||
| import "math" | ||||
| 
 | ||||
| // A Metric is a measure for cells. It is used to describe the shape and size | ||||
| // of cells. They are useful for deciding which cell level to use in order to | ||||
| // satisfy a given condition (e.g. that cell vertices must be no further than | ||||
| // "x" apart). You can use the Value(level) method to compute the corresponding | ||||
| // length or area on the unit sphere for cells at a given level. The minimum | ||||
| // and maximum bounds are valid for cells at all levels, but they may be | ||||
| // somewhat conservative for very large cells (e.g. face cells). | ||||
| type Metric struct { | ||||
| 	// Dim is either 1 or 2, for a 1D or 2D metric respectively. | ||||
| 	Dim int | ||||
| 	// Deriv is the scaling factor for the metric. | ||||
| 	Deriv float64 | ||||
| } | ||||
| 
 | ||||
| // Defined metrics. | ||||
| // Of the projection methods defined in C++, Go only supports the quadratic projection. | ||||
| 
 | ||||
| // Each cell is bounded by four planes passing through its four edges and | ||||
| // the center of the sphere. These metrics relate to the angle between each | ||||
| // pair of opposite bounding planes, or equivalently, between the planes | ||||
| // corresponding to two different s-values or two different t-values. | ||||
| var ( | ||||
| 	MinAngleSpanMetric = Metric{1, 4.0 / 3} | ||||
| 	AvgAngleSpanMetric = Metric{1, math.Pi / 2} | ||||
| 	MaxAngleSpanMetric = Metric{1, 1.704897179199218452} | ||||
| ) | ||||
| 
 | ||||
| // The width of geometric figure is defined as the distance between two | ||||
| // parallel bounding lines in a given direction. For cells, the minimum | ||||
| // width is always attained between two opposite edges, and the maximum | ||||
| // width is attained between two opposite vertices. However, for our | ||||
| // purposes we redefine the width of a cell as the perpendicular distance | ||||
| // between a pair of opposite edges. A cell therefore has two widths, one | ||||
| // in each direction. The minimum width according to this definition agrees | ||||
| // with the classic geometric one, but the maximum width is different. (The | ||||
| // maximum geometric width corresponds to MaxDiag defined below.) | ||||
| // | ||||
| // The average width in both directions for all cells at level k is approximately | ||||
| // AvgWidthMetric.Value(k). | ||||
| // | ||||
| // The width is useful for bounding the minimum or maximum distance from a | ||||
| // point on one edge of a cell to the closest point on the opposite edge. | ||||
| // For example, this is useful when growing regions by a fixed distance. | ||||
| var ( | ||||
| 	MinWidthMetric = Metric{1, 2 * math.Sqrt2 / 3} | ||||
| 	AvgWidthMetric = Metric{1, 1.434523672886099389} | ||||
| 	MaxWidthMetric = Metric{1, MaxAngleSpanMetric.Deriv} | ||||
| ) | ||||
| 
 | ||||
| // The edge length metrics can be used to bound the minimum, maximum, | ||||
| // or average distance from the center of one cell to the center of one of | ||||
| // its edge neighbors. In particular, it can be used to bound the distance | ||||
| // between adjacent cell centers along the space-filling Hilbert curve for | ||||
| // cells at any given level. | ||||
| var ( | ||||
| 	MinEdgeMetric = Metric{1, 2 * math.Sqrt2 / 3} | ||||
| 	AvgEdgeMetric = Metric{1, 1.459213746386106062} | ||||
| 	MaxEdgeMetric = Metric{1, MaxAngleSpanMetric.Deriv} | ||||
| 
 | ||||
| 	// MaxEdgeAspect is the maximum edge aspect ratio over all cells at any level, | ||||
| 	// where the edge aspect ratio of a cell is defined as the ratio of its longest | ||||
| 	// edge length to its shortest edge length. | ||||
| 	MaxEdgeAspect = 1.442615274452682920 | ||||
| 
 | ||||
| 	MinAreaMetric = Metric{2, 8 * math.Sqrt2 / 9} | ||||
| 	AvgAreaMetric = Metric{2, 4 * math.Pi / 6} | ||||
| 	MaxAreaMetric = Metric{2, 2.635799256963161491} | ||||
| ) | ||||
| 
 | ||||
| // The maximum diagonal is also the maximum diameter of any cell, | ||||
| // and also the maximum geometric width (see the comment for widths). For | ||||
| // example, the distance from an arbitrary point to the closest cell center | ||||
| // at a given level is at most half the maximum diagonal length. | ||||
| var ( | ||||
| 	MinDiagMetric = Metric{1, 8 * math.Sqrt2 / 9} | ||||
| 	AvgDiagMetric = Metric{1, 2.060422738998471683} | ||||
| 	MaxDiagMetric = Metric{1, 2.438654594434021032} | ||||
| 
 | ||||
| 	// MaxDiagAspect is the maximum diagonal aspect ratio over all cells at any | ||||
| 	// level, where the diagonal aspect ratio of a cell is defined as the ratio | ||||
| 	// of its longest diagonal length to its shortest diagonal length. | ||||
| 	MaxDiagAspect = math.Sqrt(3) | ||||
| ) | ||||
| 
 | ||||
| // Value returns the value of the metric at the given level. | ||||
| func (m Metric) Value(level int) float64 { | ||||
| 	return math.Ldexp(m.Deriv, -m.Dim*level) | ||||
| } | ||||
| 
 | ||||
| // MinLevel returns the minimum level such that the metric is at most | ||||
| // the given value, or maxLevel (30) if there is no such level. | ||||
| // | ||||
| // For example, MinLevel(0.1) returns the minimum level such that all cell diagonal | ||||
| // lengths are 0.1 or smaller. The returned value is always a valid level. | ||||
| // | ||||
| // In C++, this is called GetLevelForMaxValue. | ||||
| func (m Metric) MinLevel(val float64) int { | ||||
| 	if val < 0 { | ||||
| 		return maxLevel | ||||
| 	} | ||||
| 
 | ||||
| 	level := -(math.Ilogb(val/m.Deriv) >> uint(m.Dim-1)) | ||||
| 	if level > maxLevel { | ||||
| 		level = maxLevel | ||||
| 	} | ||||
| 	if level < 0 { | ||||
| 		level = 0 | ||||
| 	} | ||||
| 	return level | ||||
| } | ||||
| 
 | ||||
| // MaxLevel returns the maximum level such that the metric is at least | ||||
| // the given value, or zero if there is no such level. | ||||
| // | ||||
| // For example, MaxLevel(0.1) returns the maximum level such that all cells have a | ||||
| // minimum width of 0.1 or larger. The returned value is always a valid level. | ||||
| // | ||||
| // In C++, this is called GetLevelForMinValue. | ||||
| func (m Metric) MaxLevel(val float64) int { | ||||
| 	if val <= 0 { | ||||
| 		return maxLevel | ||||
| 	} | ||||
| 
 | ||||
| 	level := math.Ilogb(m.Deriv/val) >> uint(m.Dim-1) | ||||
| 	if level > maxLevel { | ||||
| 		level = maxLevel | ||||
| 	} | ||||
| 	if level < 0 { | ||||
| 		level = 0 | ||||
| 	} | ||||
| 	return level | ||||
| } | ||||
| 
 | ||||
| // ClosestLevel returns the level at which the metric has approximately the given | ||||
| // value. The return value is always a valid level. For example, | ||||
| // AvgEdgeMetric.ClosestLevel(0.1) returns the level at which the average cell edge | ||||
| // length is approximately 0.1. | ||||
| func (m Metric) ClosestLevel(val float64) int { | ||||
| 	x := math.Sqrt2 | ||||
| 	if m.Dim == 2 { | ||||
| 		x = 2 | ||||
| 	} | ||||
| 	return m.MinLevel(x * val) | ||||
| } | ||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue