mirror of
https://github.com/superseriousbusiness/gotosocial.git
synced 2025-11-13 14:27:29 -06:00
[chore] update otel libraries (#3740)
* chore: update otel dependencies * refactor: combine tracing & metrics in observability package * chore: update example tracing compose file
This commit is contained in:
parent
baed591a1d
commit
dd094e4012
217 changed files with 6873 additions and 2734 deletions
9
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/aggregate.go
generated
vendored
9
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/aggregate.go
generated
vendored
|
|
@ -8,7 +8,6 @@ import (
|
|||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
|
|
@ -38,8 +37,8 @@ type Builder[N int64 | float64] struct {
|
|||
// create new exemplar reservoirs for a new seen attribute set.
|
||||
//
|
||||
// If this is not provided a default factory function that returns an
|
||||
// exemplar.Drop reservoir will be used.
|
||||
ReservoirFunc func() exemplar.FilteredReservoir[N]
|
||||
// dropReservoir reservoir will be used.
|
||||
ReservoirFunc func(attribute.Set) FilteredExemplarReservoir[N]
|
||||
// AggregationLimit is the cardinality limit of measurement attributes. Any
|
||||
// measurement for new attributes once the limit has been reached will be
|
||||
// aggregated into a single aggregate for the "otel.metric.overflow"
|
||||
|
|
@ -50,12 +49,12 @@ type Builder[N int64 | float64] struct {
|
|||
AggregationLimit int
|
||||
}
|
||||
|
||||
func (b Builder[N]) resFunc() func() exemplar.FilteredReservoir[N] {
|
||||
func (b Builder[N]) resFunc() func(attribute.Set) FilteredExemplarReservoir[N] {
|
||||
if b.ReservoirFunc != nil {
|
||||
return b.ReservoirFunc
|
||||
}
|
||||
|
||||
return exemplar.Drop
|
||||
return dropReservoir
|
||||
}
|
||||
|
||||
type fltrMeasure[N int64 | float64] func(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue)
|
||||
|
|
|
|||
27
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/drop.go
generated
vendored
Normal file
27
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/drop.go
generated
vendored
Normal file
|
|
@ -0,0 +1,27 @@
|
|||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
import (
|
||||
"context"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/exemplar"
|
||||
)
|
||||
|
||||
// dropReservoir returns a [FilteredReservoir] that drops all measurements it is offered.
|
||||
func dropReservoir[N int64 | float64](attribute.Set) FilteredExemplarReservoir[N] {
|
||||
return &dropRes[N]{}
|
||||
}
|
||||
|
||||
type dropRes[N int64 | float64] struct{}
|
||||
|
||||
// Offer does nothing, all measurements offered will be dropped.
|
||||
func (r *dropRes[N]) Offer(context.Context, N, []attribute.KeyValue) {}
|
||||
|
||||
// Collect resets dest. No exemplars will ever be returned.
|
||||
func (r *dropRes[N]) Collect(dest *[]exemplar.Exemplar) {
|
||||
clear(*dest) // Erase elements to let GC collect objects
|
||||
*dest = (*dest)[:0]
|
||||
}
|
||||
3
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exemplar.go
generated
vendored
3
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exemplar.go
generated
vendored
|
|
@ -6,7 +6,7 @@ package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggreg
|
|||
import (
|
||||
"sync"
|
||||
|
||||
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
"go.opentelemetry.io/otel/sdk/metric/exemplar"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
|
|
@ -17,6 +17,7 @@ var exemplarPool = sync.Pool{
|
|||
func collectExemplars[N int64 | float64](out *[]metricdata.Exemplar[N], f func(*[]exemplar.Exemplar)) {
|
||||
dest := exemplarPool.Get().(*[]exemplar.Exemplar)
|
||||
defer func() {
|
||||
clear(*dest) // Erase elements to let GC collect objects.
|
||||
*dest = (*dest)[:0]
|
||||
exemplarPool.Put(dest)
|
||||
}()
|
||||
|
|
|
|||
21
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go
generated
vendored
21
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/exponential_histogram.go
generated
vendored
|
|
@ -12,7 +12,6 @@ import (
|
|||
|
||||
"go.opentelemetry.io/otel"
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
|
|
@ -31,7 +30,7 @@ const (
|
|||
// expoHistogramDataPoint is a single data point in an exponential histogram.
|
||||
type expoHistogramDataPoint[N int64 | float64] struct {
|
||||
attrs attribute.Set
|
||||
res exemplar.FilteredReservoir[N]
|
||||
res FilteredExemplarReservoir[N]
|
||||
|
||||
count uint64
|
||||
min N
|
||||
|
|
@ -51,16 +50,16 @@ type expoHistogramDataPoint[N int64 | float64] struct {
|
|||
|
||||
func newExpoHistogramDataPoint[N int64 | float64](attrs attribute.Set, maxSize int, maxScale int32, noMinMax, noSum bool) *expoHistogramDataPoint[N] {
|
||||
f := math.MaxFloat64
|
||||
max := N(f) // if N is int64, max will overflow to -9223372036854775808
|
||||
min := N(-f)
|
||||
ma := N(f) // if N is int64, max will overflow to -9223372036854775808
|
||||
mi := N(-f)
|
||||
if N(maxInt64) > N(f) {
|
||||
max = N(maxInt64)
|
||||
min = N(minInt64)
|
||||
ma = N(maxInt64)
|
||||
mi = N(minInt64)
|
||||
}
|
||||
return &expoHistogramDataPoint[N]{
|
||||
attrs: attrs,
|
||||
min: max,
|
||||
max: min,
|
||||
min: ma,
|
||||
max: mi,
|
||||
maxSize: maxSize,
|
||||
noMinMax: noMinMax,
|
||||
noSum: noSum,
|
||||
|
|
@ -284,7 +283,7 @@ func (b *expoBuckets) downscale(delta int32) {
|
|||
// newExponentialHistogram returns an Aggregator that summarizes a set of
|
||||
// measurements as an exponential histogram. Each histogram is scoped by attributes
|
||||
// and the aggregation cycle the measurements were made in.
|
||||
func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *expoHistogram[N] {
|
||||
func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *expoHistogram[N] {
|
||||
return &expoHistogram[N]{
|
||||
noSum: noSum,
|
||||
noMinMax: noMinMax,
|
||||
|
|
@ -307,7 +306,7 @@ type expoHistogram[N int64 | float64] struct {
|
|||
maxSize int
|
||||
maxScale int32
|
||||
|
||||
newRes func() exemplar.FilteredReservoir[N]
|
||||
newRes func(attribute.Set) FilteredExemplarReservoir[N]
|
||||
limit limiter[*expoHistogramDataPoint[N]]
|
||||
values map[attribute.Distinct]*expoHistogramDataPoint[N]
|
||||
valuesMu sync.Mutex
|
||||
|
|
@ -328,7 +327,7 @@ func (e *expoHistogram[N]) measure(ctx context.Context, value N, fltrAttr attrib
|
|||
v, ok := e.values[attr.Equivalent()]
|
||||
if !ok {
|
||||
v = newExpoHistogramDataPoint[N](attr, e.maxSize, e.maxScale, e.noMinMax, e.noSum)
|
||||
v.res = e.newRes()
|
||||
v.res = e.newRes(attr)
|
||||
|
||||
e.values[attr.Equivalent()] = v
|
||||
}
|
||||
|
|
|
|||
50
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/filtered_reservoir.go
generated
vendored
Normal file
50
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/filtered_reservoir.go
generated
vendored
Normal file
|
|
@ -0,0 +1,50 @@
|
|||
// Copyright The OpenTelemetry Authors
|
||||
// SPDX-License-Identifier: Apache-2.0
|
||||
|
||||
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
|
||||
|
||||
import (
|
||||
"context"
|
||||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/exemplar"
|
||||
)
|
||||
|
||||
// FilteredExemplarReservoir wraps a [exemplar.Reservoir] with a filter.
|
||||
type FilteredExemplarReservoir[N int64 | float64] interface {
|
||||
// Offer accepts the parameters associated with a measurement. The
|
||||
// parameters will be stored as an exemplar if the filter decides to
|
||||
// sample the measurement.
|
||||
//
|
||||
// The passed ctx needs to contain any baggage or span that were active
|
||||
// when the measurement was made. This information may be used by the
|
||||
// Reservoir in making a sampling decision.
|
||||
Offer(ctx context.Context, val N, attr []attribute.KeyValue)
|
||||
// Collect returns all the held exemplars in the reservoir.
|
||||
Collect(dest *[]exemplar.Exemplar)
|
||||
}
|
||||
|
||||
// filteredExemplarReservoir handles the pre-sampled exemplar of measurements made.
|
||||
type filteredExemplarReservoir[N int64 | float64] struct {
|
||||
filter exemplar.Filter
|
||||
reservoir exemplar.Reservoir
|
||||
}
|
||||
|
||||
// NewFilteredExemplarReservoir creates a [FilteredExemplarReservoir] which only offers values
|
||||
// that are allowed by the filter.
|
||||
func NewFilteredExemplarReservoir[N int64 | float64](f exemplar.Filter, r exemplar.Reservoir) FilteredExemplarReservoir[N] {
|
||||
return &filteredExemplarReservoir[N]{
|
||||
filter: f,
|
||||
reservoir: r,
|
||||
}
|
||||
}
|
||||
|
||||
func (f *filteredExemplarReservoir[N]) Offer(ctx context.Context, val N, attr []attribute.KeyValue) {
|
||||
if f.filter(ctx) {
|
||||
// only record the current time if we are sampling this measurement.
|
||||
f.reservoir.Offer(ctx, time.Now(), exemplar.NewValue(val), attr)
|
||||
}
|
||||
}
|
||||
|
||||
func (f *filteredExemplarReservoir[N]) Collect(dest *[]exemplar.Exemplar) { f.reservoir.Collect(dest) }
|
||||
11
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/histogram.go
generated
vendored
11
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/histogram.go
generated
vendored
|
|
@ -11,13 +11,12 @@ import (
|
|||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
type buckets[N int64 | float64] struct {
|
||||
attrs attribute.Set
|
||||
res exemplar.FilteredReservoir[N]
|
||||
res FilteredExemplarReservoir[N]
|
||||
|
||||
counts []uint64
|
||||
count uint64
|
||||
|
|
@ -48,13 +47,13 @@ type histValues[N int64 | float64] struct {
|
|||
noSum bool
|
||||
bounds []float64
|
||||
|
||||
newRes func() exemplar.FilteredReservoir[N]
|
||||
newRes func(attribute.Set) FilteredExemplarReservoir[N]
|
||||
limit limiter[*buckets[N]]
|
||||
values map[attribute.Distinct]*buckets[N]
|
||||
valuesMu sync.Mutex
|
||||
}
|
||||
|
||||
func newHistValues[N int64 | float64](bounds []float64, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histValues[N] {
|
||||
func newHistValues[N int64 | float64](bounds []float64, noSum bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *histValues[N] {
|
||||
// The responsibility of keeping all buckets correctly associated with the
|
||||
// passed boundaries is ultimately this type's responsibility. Make a copy
|
||||
// here so we can always guarantee this. Or, in the case of failure, have
|
||||
|
|
@ -94,7 +93,7 @@ func (s *histValues[N]) measure(ctx context.Context, value N, fltrAttr attribute
|
|||
//
|
||||
// buckets = (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, +∞)
|
||||
b = newBuckets[N](attr, len(s.bounds)+1)
|
||||
b.res = s.newRes()
|
||||
b.res = s.newRes(attr)
|
||||
|
||||
// Ensure min and max are recorded values (not zero), for new buckets.
|
||||
b.min, b.max = value, value
|
||||
|
|
@ -109,7 +108,7 @@ func (s *histValues[N]) measure(ctx context.Context, value N, fltrAttr attribute
|
|||
|
||||
// newHistogram returns an Aggregator that summarizes a set of measurements as
|
||||
// an histogram.
|
||||
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histogram[N] {
|
||||
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *histogram[N] {
|
||||
return &histogram[N]{
|
||||
histValues: newHistValues[N](boundaries, noSum, limit, r),
|
||||
noMinMax: noMinMax,
|
||||
|
|
|
|||
11
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/lastvalue.go
generated
vendored
11
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/lastvalue.go
generated
vendored
|
|
@ -9,7 +9,6 @@ import (
|
|||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
|
|
@ -17,10 +16,10 @@ import (
|
|||
type datapoint[N int64 | float64] struct {
|
||||
attrs attribute.Set
|
||||
value N
|
||||
res exemplar.FilteredReservoir[N]
|
||||
res FilteredExemplarReservoir[N]
|
||||
}
|
||||
|
||||
func newLastValue[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *lastValue[N] {
|
||||
func newLastValue[N int64 | float64](limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *lastValue[N] {
|
||||
return &lastValue[N]{
|
||||
newRes: r,
|
||||
limit: newLimiter[datapoint[N]](limit),
|
||||
|
|
@ -33,7 +32,7 @@ func newLastValue[N int64 | float64](limit int, r func() exemplar.FilteredReserv
|
|||
type lastValue[N int64 | float64] struct {
|
||||
sync.Mutex
|
||||
|
||||
newRes func() exemplar.FilteredReservoir[N]
|
||||
newRes func(attribute.Set) FilteredExemplarReservoir[N]
|
||||
limit limiter[datapoint[N]]
|
||||
values map[attribute.Distinct]datapoint[N]
|
||||
start time.Time
|
||||
|
|
@ -46,7 +45,7 @@ func (s *lastValue[N]) measure(ctx context.Context, value N, fltrAttr attribute.
|
|||
attr := s.limit.Attributes(fltrAttr, s.values)
|
||||
d, ok := s.values[attr.Equivalent()]
|
||||
if !ok {
|
||||
d.res = s.newRes()
|
||||
d.res = s.newRes(attr)
|
||||
}
|
||||
|
||||
d.attrs = attr
|
||||
|
|
@ -115,7 +114,7 @@ func (s *lastValue[N]) copyDpts(dest *[]metricdata.DataPoint[N], t time.Time) in
|
|||
|
||||
// newPrecomputedLastValue returns an aggregator that summarizes a set of
|
||||
// observations as the last one made.
|
||||
func newPrecomputedLastValue[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *precomputedLastValue[N] {
|
||||
func newPrecomputedLastValue[N int64 | float64](limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *precomputedLastValue[N] {
|
||||
return &precomputedLastValue[N]{lastValue: newLastValue[N](limit, r)}
|
||||
}
|
||||
|
||||
|
|
|
|||
17
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
generated
vendored
17
vendor/go.opentelemetry.io/otel/sdk/metric/internal/aggregate/sum.go
generated
vendored
|
|
@ -9,25 +9,24 @@ import (
|
|||
"time"
|
||||
|
||||
"go.opentelemetry.io/otel/attribute"
|
||||
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
|
||||
"go.opentelemetry.io/otel/sdk/metric/metricdata"
|
||||
)
|
||||
|
||||
type sumValue[N int64 | float64] struct {
|
||||
n N
|
||||
res exemplar.FilteredReservoir[N]
|
||||
res FilteredExemplarReservoir[N]
|
||||
attrs attribute.Set
|
||||
}
|
||||
|
||||
// valueMap is the storage for sums.
|
||||
type valueMap[N int64 | float64] struct {
|
||||
sync.Mutex
|
||||
newRes func() exemplar.FilteredReservoir[N]
|
||||
newRes func(attribute.Set) FilteredExemplarReservoir[N]
|
||||
limit limiter[sumValue[N]]
|
||||
values map[attribute.Distinct]sumValue[N]
|
||||
}
|
||||
|
||||
func newValueMap[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *valueMap[N] {
|
||||
func newValueMap[N int64 | float64](limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *valueMap[N] {
|
||||
return &valueMap[N]{
|
||||
newRes: r,
|
||||
limit: newLimiter[sumValue[N]](limit),
|
||||
|
|
@ -42,7 +41,7 @@ func (s *valueMap[N]) measure(ctx context.Context, value N, fltrAttr attribute.S
|
|||
attr := s.limit.Attributes(fltrAttr, s.values)
|
||||
v, ok := s.values[attr.Equivalent()]
|
||||
if !ok {
|
||||
v.res = s.newRes()
|
||||
v.res = s.newRes(attr)
|
||||
}
|
||||
|
||||
v.attrs = attr
|
||||
|
|
@ -55,7 +54,7 @@ func (s *valueMap[N]) measure(ctx context.Context, value N, fltrAttr attribute.S
|
|||
// newSum returns an aggregator that summarizes a set of measurements as their
|
||||
// arithmetic sum. Each sum is scoped by attributes and the aggregation cycle
|
||||
// the measurements were made in.
|
||||
func newSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *sum[N] {
|
||||
func newSum[N int64 | float64](monotonic bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *sum[N] {
|
||||
return &sum[N]{
|
||||
valueMap: newValueMap[N](limit, r),
|
||||
monotonic: monotonic,
|
||||
|
|
@ -142,9 +141,9 @@ func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int {
|
|||
}
|
||||
|
||||
// newPrecomputedSum returns an aggregator that summarizes a set of
|
||||
// observatrions as their arithmetic sum. Each sum is scoped by attributes and
|
||||
// observations as their arithmetic sum. Each sum is scoped by attributes and
|
||||
// the aggregation cycle the measurements were made in.
|
||||
func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *precomputedSum[N] {
|
||||
func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *precomputedSum[N] {
|
||||
return &precomputedSum[N]{
|
||||
valueMap: newValueMap[N](limit, r),
|
||||
monotonic: monotonic,
|
||||
|
|
@ -152,7 +151,7 @@ func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() ex
|
|||
}
|
||||
}
|
||||
|
||||
// precomputedSum summarizes a set of observatrions as their arithmetic sum.
|
||||
// precomputedSum summarizes a set of observations as their arithmetic sum.
|
||||
type precomputedSum[N int64 | float64] struct {
|
||||
*valueMap[N]
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue