[chore] update otel libraries (#3740)

* chore: update otel dependencies

* refactor: combine tracing & metrics in observability package

* chore: update example tracing compose file
This commit is contained in:
Dominik Süß 2025-02-06 12:14:37 +01:00 committed by GitHub
commit dd094e4012
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
217 changed files with 6873 additions and 2734 deletions

View file

@ -8,7 +8,6 @@ import (
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
@ -38,8 +37,8 @@ type Builder[N int64 | float64] struct {
// create new exemplar reservoirs for a new seen attribute set.
//
// If this is not provided a default factory function that returns an
// exemplar.Drop reservoir will be used.
ReservoirFunc func() exemplar.FilteredReservoir[N]
// dropReservoir reservoir will be used.
ReservoirFunc func(attribute.Set) FilteredExemplarReservoir[N]
// AggregationLimit is the cardinality limit of measurement attributes. Any
// measurement for new attributes once the limit has been reached will be
// aggregated into a single aggregate for the "otel.metric.overflow"
@ -50,12 +49,12 @@ type Builder[N int64 | float64] struct {
AggregationLimit int
}
func (b Builder[N]) resFunc() func() exemplar.FilteredReservoir[N] {
func (b Builder[N]) resFunc() func(attribute.Set) FilteredExemplarReservoir[N] {
if b.ReservoirFunc != nil {
return b.ReservoirFunc
}
return exemplar.Drop
return dropReservoir
}
type fltrMeasure[N int64 | float64] func(ctx context.Context, value N, fltrAttr attribute.Set, droppedAttr []attribute.KeyValue)

View file

@ -0,0 +1,27 @@
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
import (
"context"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/exemplar"
)
// dropReservoir returns a [FilteredReservoir] that drops all measurements it is offered.
func dropReservoir[N int64 | float64](attribute.Set) FilteredExemplarReservoir[N] {
return &dropRes[N]{}
}
type dropRes[N int64 | float64] struct{}
// Offer does nothing, all measurements offered will be dropped.
func (r *dropRes[N]) Offer(context.Context, N, []attribute.KeyValue) {}
// Collect resets dest. No exemplars will ever be returned.
func (r *dropRes[N]) Collect(dest *[]exemplar.Exemplar) {
clear(*dest) // Erase elements to let GC collect objects
*dest = (*dest)[:0]
}

View file

@ -6,7 +6,7 @@ package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggreg
import (
"sync"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
@ -17,6 +17,7 @@ var exemplarPool = sync.Pool{
func collectExemplars[N int64 | float64](out *[]metricdata.Exemplar[N], f func(*[]exemplar.Exemplar)) {
dest := exemplarPool.Get().(*[]exemplar.Exemplar)
defer func() {
clear(*dest) // Erase elements to let GC collect objects.
*dest = (*dest)[:0]
exemplarPool.Put(dest)
}()

View file

@ -12,7 +12,6 @@ import (
"go.opentelemetry.io/otel"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
@ -31,7 +30,7 @@ const (
// expoHistogramDataPoint is a single data point in an exponential histogram.
type expoHistogramDataPoint[N int64 | float64] struct {
attrs attribute.Set
res exemplar.FilteredReservoir[N]
res FilteredExemplarReservoir[N]
count uint64
min N
@ -51,16 +50,16 @@ type expoHistogramDataPoint[N int64 | float64] struct {
func newExpoHistogramDataPoint[N int64 | float64](attrs attribute.Set, maxSize int, maxScale int32, noMinMax, noSum bool) *expoHistogramDataPoint[N] {
f := math.MaxFloat64
max := N(f) // if N is int64, max will overflow to -9223372036854775808
min := N(-f)
ma := N(f) // if N is int64, max will overflow to -9223372036854775808
mi := N(-f)
if N(maxInt64) > N(f) {
max = N(maxInt64)
min = N(minInt64)
ma = N(maxInt64)
mi = N(minInt64)
}
return &expoHistogramDataPoint[N]{
attrs: attrs,
min: max,
max: min,
min: ma,
max: mi,
maxSize: maxSize,
noMinMax: noMinMax,
noSum: noSum,
@ -284,7 +283,7 @@ func (b *expoBuckets) downscale(delta int32) {
// newExponentialHistogram returns an Aggregator that summarizes a set of
// measurements as an exponential histogram. Each histogram is scoped by attributes
// and the aggregation cycle the measurements were made in.
func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *expoHistogram[N] {
func newExponentialHistogram[N int64 | float64](maxSize, maxScale int32, noMinMax, noSum bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *expoHistogram[N] {
return &expoHistogram[N]{
noSum: noSum,
noMinMax: noMinMax,
@ -307,7 +306,7 @@ type expoHistogram[N int64 | float64] struct {
maxSize int
maxScale int32
newRes func() exemplar.FilteredReservoir[N]
newRes func(attribute.Set) FilteredExemplarReservoir[N]
limit limiter[*expoHistogramDataPoint[N]]
values map[attribute.Distinct]*expoHistogramDataPoint[N]
valuesMu sync.Mutex
@ -328,7 +327,7 @@ func (e *expoHistogram[N]) measure(ctx context.Context, value N, fltrAttr attrib
v, ok := e.values[attr.Equivalent()]
if !ok {
v = newExpoHistogramDataPoint[N](attr, e.maxSize, e.maxScale, e.noMinMax, e.noSum)
v.res = e.newRes()
v.res = e.newRes(attr)
e.values[attr.Equivalent()] = v
}

View file

@ -0,0 +1,50 @@
// Copyright The OpenTelemetry Authors
// SPDX-License-Identifier: Apache-2.0
package aggregate // import "go.opentelemetry.io/otel/sdk/metric/internal/aggregate"
import (
"context"
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/exemplar"
)
// FilteredExemplarReservoir wraps a [exemplar.Reservoir] with a filter.
type FilteredExemplarReservoir[N int64 | float64] interface {
// Offer accepts the parameters associated with a measurement. The
// parameters will be stored as an exemplar if the filter decides to
// sample the measurement.
//
// The passed ctx needs to contain any baggage or span that were active
// when the measurement was made. This information may be used by the
// Reservoir in making a sampling decision.
Offer(ctx context.Context, val N, attr []attribute.KeyValue)
// Collect returns all the held exemplars in the reservoir.
Collect(dest *[]exemplar.Exemplar)
}
// filteredExemplarReservoir handles the pre-sampled exemplar of measurements made.
type filteredExemplarReservoir[N int64 | float64] struct {
filter exemplar.Filter
reservoir exemplar.Reservoir
}
// NewFilteredExemplarReservoir creates a [FilteredExemplarReservoir] which only offers values
// that are allowed by the filter.
func NewFilteredExemplarReservoir[N int64 | float64](f exemplar.Filter, r exemplar.Reservoir) FilteredExemplarReservoir[N] {
return &filteredExemplarReservoir[N]{
filter: f,
reservoir: r,
}
}
func (f *filteredExemplarReservoir[N]) Offer(ctx context.Context, val N, attr []attribute.KeyValue) {
if f.filter(ctx) {
// only record the current time if we are sampling this measurement.
f.reservoir.Offer(ctx, time.Now(), exemplar.NewValue(val), attr)
}
}
func (f *filteredExemplarReservoir[N]) Collect(dest *[]exemplar.Exemplar) { f.reservoir.Collect(dest) }

View file

@ -11,13 +11,12 @@ import (
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
type buckets[N int64 | float64] struct {
attrs attribute.Set
res exemplar.FilteredReservoir[N]
res FilteredExemplarReservoir[N]
counts []uint64
count uint64
@ -48,13 +47,13 @@ type histValues[N int64 | float64] struct {
noSum bool
bounds []float64
newRes func() exemplar.FilteredReservoir[N]
newRes func(attribute.Set) FilteredExemplarReservoir[N]
limit limiter[*buckets[N]]
values map[attribute.Distinct]*buckets[N]
valuesMu sync.Mutex
}
func newHistValues[N int64 | float64](bounds []float64, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histValues[N] {
func newHistValues[N int64 | float64](bounds []float64, noSum bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *histValues[N] {
// The responsibility of keeping all buckets correctly associated with the
// passed boundaries is ultimately this type's responsibility. Make a copy
// here so we can always guarantee this. Or, in the case of failure, have
@ -94,7 +93,7 @@ func (s *histValues[N]) measure(ctx context.Context, value N, fltrAttr attribute
//
// buckets = (-∞, 0], (0, 5.0], (5.0, 10.0], (10.0, +∞)
b = newBuckets[N](attr, len(s.bounds)+1)
b.res = s.newRes()
b.res = s.newRes(attr)
// Ensure min and max are recorded values (not zero), for new buckets.
b.min, b.max = value, value
@ -109,7 +108,7 @@ func (s *histValues[N]) measure(ctx context.Context, value N, fltrAttr attribute
// newHistogram returns an Aggregator that summarizes a set of measurements as
// an histogram.
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool, limit int, r func() exemplar.FilteredReservoir[N]) *histogram[N] {
func newHistogram[N int64 | float64](boundaries []float64, noMinMax, noSum bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *histogram[N] {
return &histogram[N]{
histValues: newHistValues[N](boundaries, noSum, limit, r),
noMinMax: noMinMax,

View file

@ -9,7 +9,6 @@ import (
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
@ -17,10 +16,10 @@ import (
type datapoint[N int64 | float64] struct {
attrs attribute.Set
value N
res exemplar.FilteredReservoir[N]
res FilteredExemplarReservoir[N]
}
func newLastValue[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *lastValue[N] {
func newLastValue[N int64 | float64](limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *lastValue[N] {
return &lastValue[N]{
newRes: r,
limit: newLimiter[datapoint[N]](limit),
@ -33,7 +32,7 @@ func newLastValue[N int64 | float64](limit int, r func() exemplar.FilteredReserv
type lastValue[N int64 | float64] struct {
sync.Mutex
newRes func() exemplar.FilteredReservoir[N]
newRes func(attribute.Set) FilteredExemplarReservoir[N]
limit limiter[datapoint[N]]
values map[attribute.Distinct]datapoint[N]
start time.Time
@ -46,7 +45,7 @@ func (s *lastValue[N]) measure(ctx context.Context, value N, fltrAttr attribute.
attr := s.limit.Attributes(fltrAttr, s.values)
d, ok := s.values[attr.Equivalent()]
if !ok {
d.res = s.newRes()
d.res = s.newRes(attr)
}
d.attrs = attr
@ -115,7 +114,7 @@ func (s *lastValue[N]) copyDpts(dest *[]metricdata.DataPoint[N], t time.Time) in
// newPrecomputedLastValue returns an aggregator that summarizes a set of
// observations as the last one made.
func newPrecomputedLastValue[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *precomputedLastValue[N] {
func newPrecomputedLastValue[N int64 | float64](limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *precomputedLastValue[N] {
return &precomputedLastValue[N]{lastValue: newLastValue[N](limit, r)}
}

View file

@ -9,25 +9,24 @@ import (
"time"
"go.opentelemetry.io/otel/attribute"
"go.opentelemetry.io/otel/sdk/metric/internal/exemplar"
"go.opentelemetry.io/otel/sdk/metric/metricdata"
)
type sumValue[N int64 | float64] struct {
n N
res exemplar.FilteredReservoir[N]
res FilteredExemplarReservoir[N]
attrs attribute.Set
}
// valueMap is the storage for sums.
type valueMap[N int64 | float64] struct {
sync.Mutex
newRes func() exemplar.FilteredReservoir[N]
newRes func(attribute.Set) FilteredExemplarReservoir[N]
limit limiter[sumValue[N]]
values map[attribute.Distinct]sumValue[N]
}
func newValueMap[N int64 | float64](limit int, r func() exemplar.FilteredReservoir[N]) *valueMap[N] {
func newValueMap[N int64 | float64](limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *valueMap[N] {
return &valueMap[N]{
newRes: r,
limit: newLimiter[sumValue[N]](limit),
@ -42,7 +41,7 @@ func (s *valueMap[N]) measure(ctx context.Context, value N, fltrAttr attribute.S
attr := s.limit.Attributes(fltrAttr, s.values)
v, ok := s.values[attr.Equivalent()]
if !ok {
v.res = s.newRes()
v.res = s.newRes(attr)
}
v.attrs = attr
@ -55,7 +54,7 @@ func (s *valueMap[N]) measure(ctx context.Context, value N, fltrAttr attribute.S
// newSum returns an aggregator that summarizes a set of measurements as their
// arithmetic sum. Each sum is scoped by attributes and the aggregation cycle
// the measurements were made in.
func newSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *sum[N] {
func newSum[N int64 | float64](monotonic bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *sum[N] {
return &sum[N]{
valueMap: newValueMap[N](limit, r),
monotonic: monotonic,
@ -142,9 +141,9 @@ func (s *sum[N]) cumulative(dest *metricdata.Aggregation) int {
}
// newPrecomputedSum returns an aggregator that summarizes a set of
// observatrions as their arithmetic sum. Each sum is scoped by attributes and
// observations as their arithmetic sum. Each sum is scoped by attributes and
// the aggregation cycle the measurements were made in.
func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() exemplar.FilteredReservoir[N]) *precomputedSum[N] {
func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func(attribute.Set) FilteredExemplarReservoir[N]) *precomputedSum[N] {
return &precomputedSum[N]{
valueMap: newValueMap[N](limit, r),
monotonic: monotonic,
@ -152,7 +151,7 @@ func newPrecomputedSum[N int64 | float64](monotonic bool, limit int, r func() ex
}
}
// precomputedSum summarizes a set of observatrions as their arithmetic sum.
// precomputedSum summarizes a set of observations as their arithmetic sum.
type precomputedSum[N int64 | float64] struct {
*valueMap[N]