// GoToSocial // Copyright (C) GoToSocial Authors admin@gotosocial.org // SPDX-License-Identifier: AGPL-3.0-or-later // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program. If not, see . package media import ( "image" "image/color" "math" "code.superseriousbusiness.org/gotosocial/internal/gtserror" ) // NOTE: // the following code is borrowed from // github.com/disintegration/imaging // and collapses in some places for our // particular usecases and with parallel() // function (spans work across goroutines) // removed, instead working synchronously. // // at gotosocial we take particular // care about where we spawn goroutines // to ensure we're in control of the // amount of concurrency in relation // to the amount configured by user. // resizeDownLinear resizes image to given width x height using linear resampling. // This is specifically optimized for resizing down (i.e. smaller), else is noop. func resizeDownLinear(img image.Image, width, height int) image.Image { srcW, srcH := img.Bounds().Dx(), img.Bounds().Dy() if srcW <= 0 || srcH <= 0 || width < 0 || height < 0 { return &image.NRGBA{} } if width == 0 { // If no width is given, use aspect preserving width. tmp := float64(height) * float64(srcW) / float64(srcH) width = int(math.Max(1.0, math.Floor(tmp+0.5))) } if height == 0 { // If no height is given, use aspect preserving height. tmp := float64(width) * float64(srcH) / float64(srcW) height = int(math.Max(1.0, math.Floor(tmp+0.5))) } if width < srcW { // Width is smaller, resize horizontally. img = resizeHorizontalLinear(img, width) } if height < srcH { // Height is smaller, resize vertically. img = resizeVerticalLinear(img, height) } return img } // flipH flips the image horizontally (left to right). func flipH(img image.Image) image.Image { srcW, srcH := img.Bounds().Dx(), img.Bounds().Dy() dstW := srcW dstH := srcH rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcY := y scanImage(img, 0, srcY, srcW, srcY+1, dst.Pix[i:i+rowSize]) reverse(dst.Pix[i : i+rowSize]) } return dst } // flipV flips the image vertically (from top to bottom). func flipV(img image.Image) image.Image { srcW, srcH := img.Bounds().Dx(), img.Bounds().Dy() dstW := srcW dstH := srcH rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcY := dstH - y - 1 scanImage(img, 0, srcY, srcW, srcY+1, dst.Pix[i:i+rowSize]) } return dst } // rotate90 rotates the image 90 counter-clockwise. func rotate90(img image.Image) image.Image { srcW, srcH := img.Bounds().Dx(), img.Bounds().Dy() dstW := srcH dstH := srcW rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcX := dstH - y - 1 scanImage(img, srcX, 0, srcX+1, srcH, dst.Pix[i:i+rowSize]) } return dst } // rotate180 rotates the image 180 counter-clockwise. func rotate180(img image.Image) image.Image { srcW, srcH := img.Bounds().Dx(), img.Bounds().Dy() dstW := srcW dstH := srcH rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcY := dstH - y - 1 scanImage(img, 0, srcY, srcW, srcY+1, dst.Pix[i:i+rowSize]) reverse(dst.Pix[i : i+rowSize]) } return dst } // rotate270 rotates the image 270 counter-clockwise. func rotate270(img image.Image) image.Image { srcW, srcH := img.Bounds().Dx(), img.Bounds().Dy() dstW := srcH dstH := srcW rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcX := y scanImage(img, srcX, 0, srcX+1, srcH, dst.Pix[i:i+rowSize]) reverse(dst.Pix[i : i+rowSize]) } return dst } // transpose flips the image horizontally and rotates 90 counter-clockwise. func transpose(img image.Image) image.Image { srcW, srcH := img.Bounds().Dx(), img.Bounds().Dy() dstW := srcH dstH := srcW rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcX := y scanImage(img, srcX, 0, srcX+1, srcH, dst.Pix[i:i+rowSize]) } return dst } // transverse flips the image vertically and rotates 90 counter-clockwise. func transverse(img image.Image) image.Image { srcW, srcH := img.Bounds().Dx(), img.Bounds().Dy() dstW := srcH dstH := srcW rowSize := dstW * 4 dst := image.NewNRGBA(image.Rect(0, 0, dstW, dstH)) for y := 0; y < dstH; y++ { i := y * dst.Stride srcX := dstH - y - 1 scanImage(img, srcX, 0, srcX+1, srcH, dst.Pix[i:i+rowSize]) reverse(dst.Pix[i : i+rowSize]) } return dst } // resizeHorizontalLinear resizes image to given width using linear resampling. func resizeHorizontalLinear(img image.Image, dstWidth int) image.Image { srcW, srcH := img.Bounds().Dx(), img.Bounds().Dy() dst := image.NewRGBA(image.Rect(0, 0, dstWidth, srcH)) weights := precomputeWeightsLinear(dstWidth, srcW) scanLine := make([]uint8, srcW*4) for y := 0; y < srcH; y++ { scanImage(img, 0, y, srcW, y+1, scanLine) j0 := y * dst.Stride for x := range weights { var r, g, b, a float64 for _, w := range weights[x] { i := w.index * 4 s := scanLine[i : i+4 : i+4] aw := float64(s[3]) * w.weight r += float64(s[0]) * aw g += float64(s[1]) * aw b += float64(s[2]) * aw a += aw } if a != 0 { j := j0 + x*4 d := dst.Pix[j : j+4 : j+4] d[0] = clampFloatTo8(r / a) d[1] = clampFloatTo8(g / a) d[2] = clampFloatTo8(b / a) d[3] = clampFloatTo8(a) } } } return dst } // resizeVerticalLinear resizes image to given height using linear resampling. func resizeVerticalLinear(img image.Image, height int) image.Image { srcW, srcH := img.Bounds().Dx(), img.Bounds().Dy() dst := image.NewNRGBA(image.Rect(0, 0, srcW, height)) weights := precomputeWeightsLinear(height, srcH) scanLine := make([]uint8, srcH*4) for x := 0; x < srcW; x++ { scanImage(img, x, 0, x+1, srcH, scanLine) for y := range weights { var r, g, b, a float64 for _, w := range weights[y] { i := w.index * 4 s := scanLine[i : i+4 : i+4] aw := float64(s[3]) * w.weight r += float64(s[0]) * aw g += float64(s[1]) * aw b += float64(s[2]) * aw a += aw } if a != 0 { j := y*dst.Stride + x*4 d := dst.Pix[j : j+4 : j+4] d[0] = clampFloatTo8(r / a) d[1] = clampFloatTo8(g / a) d[2] = clampFloatTo8(b / a) d[3] = clampFloatTo8(a) } } } return dst } type indexWeight struct { index int weight float64 } func precomputeWeightsLinear(dstSize, srcSize int) [][]indexWeight { du := float64(srcSize) / float64(dstSize) scale := du if scale < 1.0 { scale = 1.0 } ru := math.Ceil(scale) out := make([][]indexWeight, dstSize) tmp := make([]indexWeight, 0, dstSize*int(ru+2)*2) for v := 0; v < len(out); v++ { fu := (float64(v)+0.5)*du - 0.5 begin := int(math.Ceil(fu - ru)) if begin < 0 { begin = 0 } end := int(math.Floor(fu + ru)) if end > srcSize-1 { end = srcSize - 1 } var sum float64 for u := begin; u <= end; u++ { w := resampleLinear((float64(u) - fu) / scale) if w != 0 { sum += w tmp = append(tmp, indexWeight{ index: u, weight: w, }) } } if sum != 0 { for i := range tmp { tmp[i].weight /= sum } } out[v] = tmp tmp = tmp[len(tmp):] } return out } // resampleLinear is the resample kernel func for linear filtering. func resampleLinear(x float64) float64 { x = math.Abs(x) if x < 1.0 { return 1.0 - x } return 0 } // scan scans the given rectangular region of the image into dst. func scanImage(img image.Image, x1, y1, x2, y2 int, dst []uint8) { switch img := img.(type) { case *image.NRGBA: scanNRGBA(img, x1, y1, x2, y2, dst) case *image.NRGBA64: scanNRGBA64(img, x1, y1, x2, y2, dst) case *image.RGBA: scanRGBA(img, x1, y1, x2, y2, dst) case *image.RGBA64: scanRGBA64(img, x1, y1, x2, y2, dst) case *image.Gray: scanGray(img, x1, y1, x2, y2, dst) case *image.Gray16: scanGray16(img, x1, y1, x2, y2, dst) case *image.YCbCr: scanYCbCr(img, x1, y1, x2, y2, dst) case *image.Paletted: scanPaletted(img, x1, y1, x2, y2, dst) default: scanAny(img, x1, y1, x2, y2, dst) } } func scanNRGBA(img *image.NRGBA, x1, y1, x2, y2 int, dst []uint8) { size := (x2 - x1) * 4 j := 0 i := y1*img.Stride + x1*4 if size == 4 { for y := y1; y < y2; y++ { d := dst[j : j+4 : j+4] s := img.Pix[i : i+4 : i+4] d[0] = s[0] d[1] = s[1] d[2] = s[2] d[3] = s[3] j += size i += img.Stride } } else { for y := y1; y < y2; y++ { copy(dst[j:j+size], img.Pix[i:i+size]) j += size i += img.Stride } } } func scanNRGBA64(img *image.NRGBA64, x1, y1, x2, y2 int, dst []uint8) { if img == nil { panic(gtserror.New("nil check elimination")) } j := 0 for y := y1; y < y2; y++ { i := y*img.Stride + x1*8 for x := x1; x < x2; x++ { s := img.Pix[i : i+8 : i+8] d := dst[j : j+4 : j+4] d[0] = s[0] d[1] = s[2] d[2] = s[4] d[3] = s[6] j += 4 i += 8 } } } func scanRGBA(img *image.RGBA, x1, y1, x2, y2 int, dst []uint8) { if img == nil { panic(gtserror.New("nil check elimination")) } j := 0 for y := y1; y < y2; y++ { i := y*img.Stride + x1*4 for x := x1; x < x2; x++ { d := dst[j : j+4 : j+4] a := img.Pix[i+3] switch a { case 0: d[0] = 0 d[1] = 0 d[2] = 0 d[3] = a case 0xff: s := img.Pix[i : i+4 : i+4] d[0] = s[0] d[1] = s[1] d[2] = s[2] d[3] = a default: s := img.Pix[i : i+4 : i+4] r16 := uint16(s[0]) g16 := uint16(s[1]) b16 := uint16(s[2]) a16 := uint16(a) d[0] = uint8(r16 * 0xff / a16) // #nosec G115 -- Overflow desired. d[1] = uint8(g16 * 0xff / a16) // #nosec G115 -- Overflow desired. d[2] = uint8(b16 * 0xff / a16) // #nosec G115 -- Overflow desired. d[3] = a } j += 4 i += 4 } } } func scanRGBA64(img *image.RGBA64, x1, y1, x2, y2 int, dst []uint8) { if img == nil { panic(gtserror.New("nil check elimination")) } j := 0 for y := y1; y < y2; y++ { i := y*img.Stride + x1*8 for x := x1; x < x2; x++ { s := img.Pix[i : i+8 : i+8] d := dst[j : j+4 : j+4] a := s[6] switch a { case 0: d[0] = 0 d[1] = 0 d[2] = 0 case 0xff: d[0] = s[0] d[1] = s[2] d[2] = s[4] default: r32 := uint32(s[0])<<8 | uint32(s[1]) g32 := uint32(s[2])<<8 | uint32(s[3]) b32 := uint32(s[4])<<8 | uint32(s[5]) a32 := uint32(s[6])<<8 | uint32(s[7]) d[0] = uint8((r32 * 0xffff / a32) >> 8) // #nosec G115 -- Overflow desired. d[1] = uint8((g32 * 0xffff / a32) >> 8) // #nosec G115 -- Overflow desired. d[2] = uint8((b32 * 0xffff / a32) >> 8) // #nosec G115 -- Overflow desired. } d[3] = a j += 4 i += 8 } } } func scanGray(img *image.Gray, x1, y1, x2, y2 int, dst []uint8) { if img == nil { panic(gtserror.New("nil check elimination")) } j := 0 for y := y1; y < y2; y++ { i := y*img.Stride + x1 for x := x1; x < x2; x++ { c := img.Pix[i] d := dst[j : j+4 : j+4] d[0] = c d[1] = c d[2] = c d[3] = 0xff j += 4 i++ } } } func scanGray16(img *image.Gray16, x1, y1, x2, y2 int, dst []uint8) { if img == nil { panic(gtserror.New("nil check elimination")) } j := 0 for y := y1; y < y2; y++ { i := y*img.Stride + x1*2 for x := x1; x < x2; x++ { c := img.Pix[i] d := dst[j : j+4 : j+4] d[0] = c d[1] = c d[2] = c d[3] = 0xff j += 4 i += 2 } } } func scanYCbCr(img *image.YCbCr, x1, y1, x2, y2 int, dst []uint8) { j := 0 x1 += img.Rect.Min.X x2 += img.Rect.Min.X y1 += img.Rect.Min.Y y2 += img.Rect.Min.Y hy := img.Rect.Min.Y / 2 hx := img.Rect.Min.X / 2 switch img.SubsampleRatio { case image.YCbCrSubsampleRatio420: for y := y1; y < y2; y++ { iy := (y-img.Rect.Min.Y)*img.YStride + (x1 - img.Rect.Min.X) yBase := (y/2 - hy) * img.CStride for x := x1; x < x2; x++ { ic := yBase + (x/2 - hx) yy1 := int32(img.Y[iy]) * 0x10101 cb1 := int32(img.Cb[ic]) - 128 cr1 := int32(img.Cr[ic]) - 128 r := yy1 + 91881*cr1 if uint32(r)&0xff000000 == 0 { //nolint:gosec r >>= 16 } else { r = ^(r >> 31) } g := yy1 - 22554*cb1 - 46802*cr1 if uint32(g)&0xff000000 == 0 { //nolint:gosec g >>= 16 } else { g = ^(g >> 31) } b := yy1 + 116130*cb1 if uint32(b)&0xff000000 == 0 { //nolint:gosec b >>= 16 } else { b = ^(b >> 31) } d := dst[j : j+4 : j+4] d[0] = uint8(r) // #nosec G115 -- Overflow desired. d[1] = uint8(g) // #nosec G115 -- Overflow desired. d[2] = uint8(b) // #nosec G115 -- Overflow desired. d[3] = 0xff iy++ j += 4 } } case image.YCbCrSubsampleRatio422: for y := y1; y < y2; y++ { iy := (y-img.Rect.Min.Y)*img.YStride + (x1 - img.Rect.Min.X) yBase := (y - img.Rect.Min.Y) * img.CStride for x := x1; x < x2; x++ { ic := yBase + (x/2 - hx) yy1 := int32(img.Y[iy]) * 0x10101 cb1 := int32(img.Cb[ic]) - 128 cr1 := int32(img.Cr[ic]) - 128 r := yy1 + 91881*cr1 if uint32(r)&0xff000000 == 0 { //nolint:gosec r >>= 16 } else { r = ^(r >> 31) } g := yy1 - 22554*cb1 - 46802*cr1 if uint32(g)&0xff000000 == 0 { //nolint:gosec g >>= 16 } else { g = ^(g >> 31) } b := yy1 + 116130*cb1 if uint32(b)&0xff000000 == 0 { //nolint:gosec b >>= 16 } else { b = ^(b >> 31) } d := dst[j : j+4 : j+4] d[0] = uint8(r) // #nosec G115 -- Overflow desired. d[1] = uint8(g) // #nosec G115 -- Overflow desired. d[2] = uint8(b) // #nosec G115 -- Overflow desired. d[3] = 0xff iy++ j += 4 } } case image.YCbCrSubsampleRatio440: for y := y1; y < y2; y++ { iy := (y-img.Rect.Min.Y)*img.YStride + (x1 - img.Rect.Min.X) yBase := (y/2 - hy) * img.CStride for x := x1; x < x2; x++ { ic := yBase + (x - img.Rect.Min.X) yy1 := int32(img.Y[iy]) * 0x10101 cb1 := int32(img.Cb[ic]) - 128 cr1 := int32(img.Cr[ic]) - 128 r := yy1 + 91881*cr1 if uint32(r)&0xff000000 == 0 { //nolint:gosec r >>= 16 } else { r = ^(r >> 31) } g := yy1 - 22554*cb1 - 46802*cr1 if uint32(g)&0xff000000 == 0 { //nolint:gosec g >>= 16 } else { g = ^(g >> 31) } b := yy1 + 116130*cb1 if uint32(b)&0xff000000 == 0 { //nolint:gosec b >>= 16 } else { b = ^(b >> 31) } d := dst[j : j+4 : j+4] d[0] = uint8(r) // #nosec G115 -- Overflow desired. d[1] = uint8(g) // #nosec G115 -- Overflow desired. d[2] = uint8(b) // #nosec G115 -- Overflow desired. d[3] = 0xff iy++ j += 4 } } case image.YCbCrSubsampleRatio444: for y := y1; y < y2; y++ { iy := (y-img.Rect.Min.Y)*img.YStride + (x1 - img.Rect.Min.X) yBase := (y - img.Rect.Min.Y) * img.CStride for x := x1; x < x2; x++ { ic := yBase + (x - img.Rect.Min.X) yy1 := int32(img.Y[iy]) * 0x10101 cb1 := int32(img.Cb[ic]) - 128 cr1 := int32(img.Cr[ic]) - 128 r := yy1 + 91881*cr1 if uint32(r)&0xff000000 == 0 { //nolint:gosec r >>= 16 } else { r = ^(r >> 31) } g := yy1 - 22554*cb1 - 46802*cr1 if uint32(g)&0xff000000 == 0 { //nolint:gosec g >>= 16 } else { g = ^(g >> 31) } b := yy1 + 116130*cb1 if uint32(b)&0xff000000 == 0 { //nolint:gosec b >>= 16 } else { b = ^(b >> 31) } d := dst[j : j+4 : j+4] d[0] = uint8(r) // #nosec G115 -- Overflow desired. d[1] = uint8(g) // #nosec G115 -- Overflow desired. d[2] = uint8(b) // #nosec G115 -- Overflow desired. d[3] = 0xff iy++ j += 4 } } default: for y := y1; y < y2; y++ { iy := (y-img.Rect.Min.Y)*img.YStride + (x1 - img.Rect.Min.X) for x := x1; x < x2; x++ { ic := img.COffset(x, y) yy1 := int32(img.Y[iy]) * 0x10101 cb1 := int32(img.Cb[ic]) - 128 cr1 := int32(img.Cr[ic]) - 128 r := yy1 + 91881*cr1 if uint32(r)&0xff000000 == 0 { //nolint:gosec r >>= 16 } else { r = ^(r >> 31) } g := yy1 - 22554*cb1 - 46802*cr1 if uint32(g)&0xff000000 == 0 { //nolint:gosec g >>= 16 } else { g = ^(g >> 31) } b := yy1 + 116130*cb1 if uint32(b)&0xff000000 == 0 { //nolint:gosec b >>= 16 } else { b = ^(b >> 31) } d := dst[j : j+4 : j+4] d[0] = uint8(r) // #nosec G115 -- Overflow desired. d[1] = uint8(g) // #nosec G115 -- Overflow desired. d[2] = uint8(b) // #nosec G115 -- Overflow desired. d[3] = 0xff iy++ j += 4 } } } } func scanPaletted(img *image.Paletted, x1, y1, x2, y2 int, dst []uint8) { var palette [256]color.NRGBA if len(palette) < len(img.Palette) { panic(gtserror.New("bound check elimination")) } for i := 0; i < len(img.Palette); i++ { palette[i] = colorToNRGBA(img.Palette[i]) } j := 0 for y := y1; y < y2; y++ { i := y*img.Stride + x1 for x := x1; x < x2; x++ { c := palette[img.Pix[i]] d := dst[j : j+4 : j+4] d[0] = c.R d[1] = c.G d[2] = c.B d[3] = c.A j += 4 i++ } } } // inlined from: image/color.NRGBAModel.Convert() func colorToNRGBA(c color.Color) color.NRGBA { if c, ok := c.(color.NRGBA); ok { return c } r, g, b, a := c.RGBA() if a == 0xffff { return color.NRGBA{ uint8(r >> 8), // #nosec G115 -- from stdlib uint8(g >> 8), // #nosec G115 -- from stdlib uint8(b >> 8), // #nosec G115 -- from stdlib 0xff, } } if a == 0 { return color.NRGBA{ 0, 0, 0, 0, } } // Since Color.RGBA returns an alpha-premultiplied color, // we should have r <= a && g <= a && b <= a. r = (r * 0xffff) / a g = (g * 0xffff) / a b = (b * 0xffff) / a return color.NRGBA{ uint8(r >> 8), // #nosec G115 -- from stdlib uint8(g >> 8), // #nosec G115 -- from stdlib uint8(b >> 8), // #nosec G115 -- from stdlib uint8(a >> 8), // #nosec G115 -- from stdlib } } func scanAny(img image.Image, x1, y1, x2, y2 int, dst []uint8) { j := 0 b := img.Bounds() x1 += b.Min.X x2 += b.Min.X y1 += b.Min.Y y2 += b.Min.Y for y := y1; y < y2; y++ { for x := x1; x < x2; x++ { r16, g16, b16, a16 := img.At(x, y).RGBA() d := dst[j : j+4 : j+4] switch a16 { case 0xffff: d[0] = uint8(r16 >> 8) // #nosec G115 -- Overflow desired. d[1] = uint8(g16 >> 8) // #nosec G115 -- Overflow desired. d[2] = uint8(b16 >> 8) // #nosec G115 -- Overflow desired. d[3] = 0xff case 0: d[0] = 0 d[1] = 0 d[2] = 0 d[3] = 0 default: d[0] = uint8(((r16 * 0xffff) / a16) >> 8) // #nosec G115 -- Overflow desired. d[1] = uint8(((g16 * 0xffff) / a16) >> 8) // #nosec G115 -- Overflow desired. d[2] = uint8(((b16 * 0xffff) / a16) >> 8) // #nosec G115 -- Overflow desired. d[3] = uint8(a16 >> 8) // #nosec G115 -- Overflow desired. } j += 4 } } } // reverse reverses the data // in contained pixel slice. func reverse(pix8 []uint8) { if len(pix8) <= 4 || len(pix8)%4 != 0 { return } for i, j := 0, len(pix8)-4; i < j; i, j = i+4, j-4 { di := pix8[i : i+4 : i+4] dj := pix8[j : j+4 : j+4] di[0], dj[0] = dj[0], di[0] di[1], dj[1] = dj[1], di[1] di[2], dj[2] = dj[2], di[2] di[3], dj[3] = dj[3], di[3] } } // clampFloatTo8 rounds and clamps // float64 value to fit into uint8. func clampFloatTo8(x float64) uint8 { v := int64(x + 0.5) if v > 255 { return 255 } if v > 0 { return uint8(v) // #nosec G115 -- Just checked. } return 0 }