mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-11-03 19:02:26 -06:00 
			
		
		
		
	Bumps [github.com/KimMachineGun/automemlimit](https://github.com/KimMachineGun/automemlimit) from 0.2.4 to 0.2.5. - [Release notes](https://github.com/KimMachineGun/automemlimit/releases) - [Commits](https://github.com/KimMachineGun/automemlimit/compare/v0.2.4...v0.2.5) --- updated-dependencies: - dependency-name: github.com/KimMachineGun/automemlimit dependency-type: direct:production update-type: version-update:semver-patch ... Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
		
			
				
	
	
		
			1197 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1197 lines
		
	
	
	
		
			36 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
package ebpf
 | 
						|
 | 
						|
import (
 | 
						|
	"bufio"
 | 
						|
	"bytes"
 | 
						|
	"debug/elf"
 | 
						|
	"encoding/binary"
 | 
						|
	"errors"
 | 
						|
	"fmt"
 | 
						|
	"io"
 | 
						|
	"math"
 | 
						|
	"os"
 | 
						|
	"strings"
 | 
						|
 | 
						|
	"github.com/cilium/ebpf/asm"
 | 
						|
	"github.com/cilium/ebpf/btf"
 | 
						|
	"github.com/cilium/ebpf/internal"
 | 
						|
	"github.com/cilium/ebpf/internal/unix"
 | 
						|
)
 | 
						|
 | 
						|
// elfCode is a convenience to reduce the amount of arguments that have to
 | 
						|
// be passed around explicitly. You should treat its contents as immutable.
 | 
						|
type elfCode struct {
 | 
						|
	*internal.SafeELFFile
 | 
						|
	sections map[elf.SectionIndex]*elfSection
 | 
						|
	license  string
 | 
						|
	version  uint32
 | 
						|
	btf      *btf.Spec
 | 
						|
	extInfo  *btf.ExtInfos
 | 
						|
}
 | 
						|
 | 
						|
// LoadCollectionSpec parses an ELF file into a CollectionSpec.
 | 
						|
func LoadCollectionSpec(file string) (*CollectionSpec, error) {
 | 
						|
	f, err := os.Open(file)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	defer f.Close()
 | 
						|
 | 
						|
	spec, err := LoadCollectionSpecFromReader(f)
 | 
						|
	if err != nil {
 | 
						|
		return nil, fmt.Errorf("file %s: %w", file, err)
 | 
						|
	}
 | 
						|
	return spec, nil
 | 
						|
}
 | 
						|
 | 
						|
// LoadCollectionSpecFromReader parses an ELF file into a CollectionSpec.
 | 
						|
func LoadCollectionSpecFromReader(rd io.ReaderAt) (*CollectionSpec, error) {
 | 
						|
	f, err := internal.NewSafeELFFile(rd)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
 | 
						|
	var (
 | 
						|
		licenseSection *elf.Section
 | 
						|
		versionSection *elf.Section
 | 
						|
		sections       = make(map[elf.SectionIndex]*elfSection)
 | 
						|
		relSections    = make(map[elf.SectionIndex]*elf.Section)
 | 
						|
	)
 | 
						|
 | 
						|
	// This is the target of relocations generated by inline assembly.
 | 
						|
	sections[elf.SHN_UNDEF] = newElfSection(new(elf.Section), undefSection)
 | 
						|
 | 
						|
	// Collect all the sections we're interested in. This includes relocations
 | 
						|
	// which we parse later.
 | 
						|
	for i, sec := range f.Sections {
 | 
						|
		idx := elf.SectionIndex(i)
 | 
						|
 | 
						|
		switch {
 | 
						|
		case strings.HasPrefix(sec.Name, "license"):
 | 
						|
			licenseSection = sec
 | 
						|
		case strings.HasPrefix(sec.Name, "version"):
 | 
						|
			versionSection = sec
 | 
						|
		case strings.HasPrefix(sec.Name, "maps"):
 | 
						|
			sections[idx] = newElfSection(sec, mapSection)
 | 
						|
		case sec.Name == ".maps":
 | 
						|
			sections[idx] = newElfSection(sec, btfMapSection)
 | 
						|
		case sec.Name == ".bss" || sec.Name == ".data" || strings.HasPrefix(sec.Name, ".rodata"):
 | 
						|
			sections[idx] = newElfSection(sec, dataSection)
 | 
						|
		case sec.Type == elf.SHT_REL:
 | 
						|
			// Store relocations under the section index of the target
 | 
						|
			relSections[elf.SectionIndex(sec.Info)] = sec
 | 
						|
		case sec.Type == elf.SHT_PROGBITS && (sec.Flags&elf.SHF_EXECINSTR) != 0 && sec.Size > 0:
 | 
						|
			sections[idx] = newElfSection(sec, programSection)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	license, err := loadLicense(licenseSection)
 | 
						|
	if err != nil {
 | 
						|
		return nil, fmt.Errorf("load license: %w", err)
 | 
						|
	}
 | 
						|
 | 
						|
	version, err := loadVersion(versionSection, f.ByteOrder)
 | 
						|
	if err != nil {
 | 
						|
		return nil, fmt.Errorf("load version: %w", err)
 | 
						|
	}
 | 
						|
 | 
						|
	btfSpec, btfExtInfo, err := btf.LoadSpecAndExtInfosFromReader(rd)
 | 
						|
	if err != nil && !errors.Is(err, btf.ErrNotFound) {
 | 
						|
		return nil, fmt.Errorf("load BTF: %w", err)
 | 
						|
	}
 | 
						|
 | 
						|
	ec := &elfCode{
 | 
						|
		SafeELFFile: f,
 | 
						|
		sections:    sections,
 | 
						|
		license:     license,
 | 
						|
		version:     version,
 | 
						|
		btf:         btfSpec,
 | 
						|
		extInfo:     btfExtInfo,
 | 
						|
	}
 | 
						|
 | 
						|
	symbols, err := f.Symbols()
 | 
						|
	if err != nil {
 | 
						|
		return nil, fmt.Errorf("load symbols: %v", err)
 | 
						|
	}
 | 
						|
 | 
						|
	ec.assignSymbols(symbols)
 | 
						|
 | 
						|
	if err := ec.loadRelocations(relSections, symbols); err != nil {
 | 
						|
		return nil, fmt.Errorf("load relocations: %w", err)
 | 
						|
	}
 | 
						|
 | 
						|
	// Collect all the various ways to define maps.
 | 
						|
	maps := make(map[string]*MapSpec)
 | 
						|
	if err := ec.loadMaps(maps); err != nil {
 | 
						|
		return nil, fmt.Errorf("load maps: %w", err)
 | 
						|
	}
 | 
						|
 | 
						|
	if err := ec.loadBTFMaps(maps); err != nil {
 | 
						|
		return nil, fmt.Errorf("load BTF maps: %w", err)
 | 
						|
	}
 | 
						|
 | 
						|
	if err := ec.loadDataSections(maps); err != nil {
 | 
						|
		return nil, fmt.Errorf("load data sections: %w", err)
 | 
						|
	}
 | 
						|
 | 
						|
	// Finally, collect programs and link them.
 | 
						|
	progs, err := ec.loadProgramSections()
 | 
						|
	if err != nil {
 | 
						|
		return nil, fmt.Errorf("load programs: %w", err)
 | 
						|
	}
 | 
						|
 | 
						|
	return &CollectionSpec{maps, progs, btfSpec, ec.ByteOrder}, nil
 | 
						|
}
 | 
						|
 | 
						|
func loadLicense(sec *elf.Section) (string, error) {
 | 
						|
	if sec == nil {
 | 
						|
		return "", nil
 | 
						|
	}
 | 
						|
 | 
						|
	data, err := sec.Data()
 | 
						|
	if err != nil {
 | 
						|
		return "", fmt.Errorf("section %s: %v", sec.Name, err)
 | 
						|
	}
 | 
						|
	return string(bytes.TrimRight(data, "\000")), nil
 | 
						|
}
 | 
						|
 | 
						|
func loadVersion(sec *elf.Section, bo binary.ByteOrder) (uint32, error) {
 | 
						|
	if sec == nil {
 | 
						|
		return 0, nil
 | 
						|
	}
 | 
						|
 | 
						|
	var version uint32
 | 
						|
	if err := binary.Read(sec.Open(), bo, &version); err != nil {
 | 
						|
		return 0, fmt.Errorf("section %s: %v", sec.Name, err)
 | 
						|
	}
 | 
						|
	return version, nil
 | 
						|
}
 | 
						|
 | 
						|
type elfSectionKind int
 | 
						|
 | 
						|
const (
 | 
						|
	undefSection elfSectionKind = iota
 | 
						|
	mapSection
 | 
						|
	btfMapSection
 | 
						|
	programSection
 | 
						|
	dataSection
 | 
						|
)
 | 
						|
 | 
						|
type elfSection struct {
 | 
						|
	*elf.Section
 | 
						|
	kind elfSectionKind
 | 
						|
	// Offset from the start of the section to a symbol
 | 
						|
	symbols map[uint64]elf.Symbol
 | 
						|
	// Offset from the start of the section to a relocation, which points at
 | 
						|
	// a symbol in another section.
 | 
						|
	relocations map[uint64]elf.Symbol
 | 
						|
	// The number of relocations pointing at this section.
 | 
						|
	references int
 | 
						|
}
 | 
						|
 | 
						|
func newElfSection(section *elf.Section, kind elfSectionKind) *elfSection {
 | 
						|
	return &elfSection{
 | 
						|
		section,
 | 
						|
		kind,
 | 
						|
		make(map[uint64]elf.Symbol),
 | 
						|
		make(map[uint64]elf.Symbol),
 | 
						|
		0,
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// assignSymbols takes a list of symbols and assigns them to their
 | 
						|
// respective sections, indexed by name.
 | 
						|
func (ec *elfCode) assignSymbols(symbols []elf.Symbol) {
 | 
						|
	for _, symbol := range symbols {
 | 
						|
		symType := elf.ST_TYPE(symbol.Info)
 | 
						|
		symSection := ec.sections[symbol.Section]
 | 
						|
		if symSection == nil {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		// Anonymous symbols only occur in debug sections which we don't process
 | 
						|
		// relocations for. Anonymous symbols are not referenced from other sections.
 | 
						|
		if symbol.Name == "" {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		// Older versions of LLVM don't tag symbols correctly, so keep
 | 
						|
		// all NOTYPE ones.
 | 
						|
		switch symSection.kind {
 | 
						|
		case mapSection, btfMapSection, dataSection:
 | 
						|
			if symType != elf.STT_NOTYPE && symType != elf.STT_OBJECT {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
		case programSection:
 | 
						|
			if symType != elf.STT_NOTYPE && symType != elf.STT_FUNC {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
			// LLVM emits LBB_ (Local Basic Block) symbols that seem to be jump
 | 
						|
			// targets within sections, but BPF has no use for them.
 | 
						|
			if symType == elf.STT_NOTYPE && elf.ST_BIND(symbol.Info) == elf.STB_LOCAL &&
 | 
						|
				strings.HasPrefix(symbol.Name, "LBB") {
 | 
						|
				continue
 | 
						|
			}
 | 
						|
		// Only collect symbols that occur in program/maps/data sections.
 | 
						|
		default:
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		symSection.symbols[symbol.Value] = symbol
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// loadRelocations iterates .rel* sections and extracts relocation entries for
 | 
						|
// sections of interest. Makes sure relocations point at valid sections.
 | 
						|
func (ec *elfCode) loadRelocations(relSections map[elf.SectionIndex]*elf.Section, symbols []elf.Symbol) error {
 | 
						|
	for idx, relSection := range relSections {
 | 
						|
		section := ec.sections[idx]
 | 
						|
		if section == nil {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		rels, err := ec.loadSectionRelocations(relSection, symbols)
 | 
						|
		if err != nil {
 | 
						|
			return fmt.Errorf("relocation for section %q: %w", section.Name, err)
 | 
						|
		}
 | 
						|
 | 
						|
		for _, rel := range rels {
 | 
						|
			target := ec.sections[rel.Section]
 | 
						|
			if target == nil {
 | 
						|
				return fmt.Errorf("section %q: reference to %q in section %s: %w", section.Name, rel.Name, rel.Section, ErrNotSupported)
 | 
						|
			}
 | 
						|
 | 
						|
			if target.Flags&elf.SHF_STRINGS > 0 {
 | 
						|
				return fmt.Errorf("section %q: string is not stack allocated: %w", section.Name, ErrNotSupported)
 | 
						|
			}
 | 
						|
 | 
						|
			target.references++
 | 
						|
		}
 | 
						|
 | 
						|
		section.relocations = rels
 | 
						|
	}
 | 
						|
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// loadProgramSections iterates ec's sections and emits a ProgramSpec
 | 
						|
// for each function it finds.
 | 
						|
//
 | 
						|
// The resulting map is indexed by function name.
 | 
						|
func (ec *elfCode) loadProgramSections() (map[string]*ProgramSpec, error) {
 | 
						|
 | 
						|
	progs := make(map[string]*ProgramSpec)
 | 
						|
 | 
						|
	// Generate a ProgramSpec for each function found in each program section.
 | 
						|
	var export []string
 | 
						|
	for _, sec := range ec.sections {
 | 
						|
		if sec.kind != programSection {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		if len(sec.symbols) == 0 {
 | 
						|
			return nil, fmt.Errorf("section %v: missing symbols", sec.Name)
 | 
						|
		}
 | 
						|
 | 
						|
		funcs, err := ec.loadFunctions(sec)
 | 
						|
		if err != nil {
 | 
						|
			return nil, fmt.Errorf("section %v: %w", sec.Name, err)
 | 
						|
		}
 | 
						|
 | 
						|
		progType, attachType, progFlags, attachTo := getProgType(sec.Name)
 | 
						|
 | 
						|
		for name, insns := range funcs {
 | 
						|
			spec := &ProgramSpec{
 | 
						|
				Name:          name,
 | 
						|
				Type:          progType,
 | 
						|
				Flags:         progFlags,
 | 
						|
				AttachType:    attachType,
 | 
						|
				AttachTo:      attachTo,
 | 
						|
				SectionName:   sec.Name,
 | 
						|
				License:       ec.license,
 | 
						|
				KernelVersion: ec.version,
 | 
						|
				Instructions:  insns,
 | 
						|
				ByteOrder:     ec.ByteOrder,
 | 
						|
				BTF:           ec.btf,
 | 
						|
			}
 | 
						|
 | 
						|
			// Function names must be unique within a single ELF blob.
 | 
						|
			if progs[name] != nil {
 | 
						|
				return nil, fmt.Errorf("duplicate program name %s", name)
 | 
						|
			}
 | 
						|
			progs[name] = spec
 | 
						|
 | 
						|
			if spec.SectionName != ".text" {
 | 
						|
				export = append(export, name)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	flattenPrograms(progs, export)
 | 
						|
 | 
						|
	// Hide programs (e.g. library functions) that were not explicitly emitted
 | 
						|
	// to an ELF section. These could be exposed in a separate CollectionSpec
 | 
						|
	// field later to allow them to be modified.
 | 
						|
	for n, p := range progs {
 | 
						|
		if p.SectionName == ".text" {
 | 
						|
			delete(progs, n)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return progs, nil
 | 
						|
}
 | 
						|
 | 
						|
// loadFunctions extracts instruction streams from the given program section
 | 
						|
// starting at each symbol in the section. The section's symbols must already
 | 
						|
// be narrowed down to STT_NOTYPE (emitted by clang <8) or STT_FUNC.
 | 
						|
//
 | 
						|
// The resulting map is indexed by function name.
 | 
						|
func (ec *elfCode) loadFunctions(section *elfSection) (map[string]asm.Instructions, error) {
 | 
						|
	r := bufio.NewReader(section.Open())
 | 
						|
 | 
						|
	// Decode the section's instruction stream.
 | 
						|
	var insns asm.Instructions
 | 
						|
	if err := insns.Unmarshal(r, ec.ByteOrder); err != nil {
 | 
						|
		return nil, fmt.Errorf("decoding instructions for section %s: %w", section.Name, err)
 | 
						|
	}
 | 
						|
	if len(insns) == 0 {
 | 
						|
		return nil, fmt.Errorf("no instructions found in section %s", section.Name)
 | 
						|
	}
 | 
						|
 | 
						|
	iter := insns.Iterate()
 | 
						|
	for iter.Next() {
 | 
						|
		ins := iter.Ins
 | 
						|
		offset := iter.Offset.Bytes()
 | 
						|
 | 
						|
		// Tag Symbol Instructions.
 | 
						|
		if sym, ok := section.symbols[offset]; ok {
 | 
						|
			*ins = ins.WithSymbol(sym.Name)
 | 
						|
		}
 | 
						|
 | 
						|
		// Apply any relocations for the current instruction.
 | 
						|
		// If no relocation is present, resolve any section-relative function calls.
 | 
						|
		if rel, ok := section.relocations[offset]; ok {
 | 
						|
			if err := ec.relocateInstruction(ins, rel); err != nil {
 | 
						|
				return nil, fmt.Errorf("offset %d: relocating instruction: %w", offset, err)
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			if err := referenceRelativeJump(ins, offset, section.symbols); err != nil {
 | 
						|
				return nil, fmt.Errorf("offset %d: resolving relative jump: %w", offset, err)
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if ec.extInfo != nil {
 | 
						|
		ec.extInfo.Assign(insns, section.Name)
 | 
						|
	}
 | 
						|
 | 
						|
	return splitSymbols(insns)
 | 
						|
}
 | 
						|
 | 
						|
// referenceRelativeJump turns a relative jump to another bpf subprogram within
 | 
						|
// the same ELF section into a Reference Instruction.
 | 
						|
//
 | 
						|
// Up to LLVM 9, calls to subprograms within the same ELF section are sometimes
 | 
						|
// encoded using relative jumps instead of relocation entries. These jumps go
 | 
						|
// out of bounds of the current program, so their targets must be memoized
 | 
						|
// before the section's instruction stream is split.
 | 
						|
//
 | 
						|
// The relative jump Constant is blinded to -1 and the target Symbol is set as
 | 
						|
// the Instruction's Reference so it can be resolved by the linker.
 | 
						|
func referenceRelativeJump(ins *asm.Instruction, offset uint64, symbols map[uint64]elf.Symbol) error {
 | 
						|
	if !ins.IsFunctionReference() || ins.Constant == -1 {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
 | 
						|
	tgt := jumpTarget(offset, *ins)
 | 
						|
	sym := symbols[tgt].Name
 | 
						|
	if sym == "" {
 | 
						|
		return fmt.Errorf("no jump target found at offset %d", tgt)
 | 
						|
	}
 | 
						|
 | 
						|
	*ins = ins.WithReference(sym)
 | 
						|
	ins.Constant = -1
 | 
						|
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// jumpTarget takes ins' offset within an instruction stream (in bytes)
 | 
						|
// and returns its absolute jump destination (in bytes) within the
 | 
						|
// instruction stream.
 | 
						|
func jumpTarget(offset uint64, ins asm.Instruction) uint64 {
 | 
						|
	// A relative jump instruction describes the amount of raw BPF instructions
 | 
						|
	// to jump, convert the offset into bytes.
 | 
						|
	dest := ins.Constant * asm.InstructionSize
 | 
						|
 | 
						|
	// The starting point of the jump is the end of the current instruction.
 | 
						|
	dest += int64(offset + asm.InstructionSize)
 | 
						|
 | 
						|
	if dest < 0 {
 | 
						|
		return 0
 | 
						|
	}
 | 
						|
 | 
						|
	return uint64(dest)
 | 
						|
}
 | 
						|
 | 
						|
func (ec *elfCode) relocateInstruction(ins *asm.Instruction, rel elf.Symbol) error {
 | 
						|
	var (
 | 
						|
		typ  = elf.ST_TYPE(rel.Info)
 | 
						|
		bind = elf.ST_BIND(rel.Info)
 | 
						|
		name = rel.Name
 | 
						|
	)
 | 
						|
 | 
						|
	target := ec.sections[rel.Section]
 | 
						|
 | 
						|
	switch target.kind {
 | 
						|
	case mapSection, btfMapSection:
 | 
						|
		if bind != elf.STB_GLOBAL {
 | 
						|
			return fmt.Errorf("possible erroneous static qualifier on map definition: found reference to %q", name)
 | 
						|
		}
 | 
						|
 | 
						|
		if typ != elf.STT_OBJECT && typ != elf.STT_NOTYPE {
 | 
						|
			// STT_NOTYPE is generated on clang < 8 which doesn't tag
 | 
						|
			// relocations appropriately.
 | 
						|
			return fmt.Errorf("map load: incorrect relocation type %v", typ)
 | 
						|
		}
 | 
						|
 | 
						|
		ins.Src = asm.PseudoMapFD
 | 
						|
 | 
						|
	case dataSection:
 | 
						|
		var offset uint32
 | 
						|
		switch typ {
 | 
						|
		case elf.STT_SECTION:
 | 
						|
			if bind != elf.STB_LOCAL {
 | 
						|
				return fmt.Errorf("direct load: %s: unsupported section relocation %s", name, bind)
 | 
						|
			}
 | 
						|
 | 
						|
			// This is really a reference to a static symbol, which clang doesn't
 | 
						|
			// emit a symbol table entry for. Instead it encodes the offset in
 | 
						|
			// the instruction itself.
 | 
						|
			offset = uint32(uint64(ins.Constant))
 | 
						|
 | 
						|
		case elf.STT_OBJECT:
 | 
						|
			// LLVM 9 emits OBJECT-LOCAL symbols for anonymous constants.
 | 
						|
			if bind != elf.STB_GLOBAL && bind != elf.STB_LOCAL {
 | 
						|
				return fmt.Errorf("direct load: %s: unsupported object relocation %s", name, bind)
 | 
						|
			}
 | 
						|
 | 
						|
			offset = uint32(rel.Value)
 | 
						|
 | 
						|
		case elf.STT_NOTYPE:
 | 
						|
			// LLVM 7 emits NOTYPE-LOCAL symbols for anonymous constants.
 | 
						|
			if bind != elf.STB_LOCAL {
 | 
						|
				return fmt.Errorf("direct load: %s: unsupported untyped relocation %s", name, bind)
 | 
						|
			}
 | 
						|
 | 
						|
			offset = uint32(rel.Value)
 | 
						|
 | 
						|
		default:
 | 
						|
			return fmt.Errorf("incorrect relocation type %v for direct map load", typ)
 | 
						|
		}
 | 
						|
 | 
						|
		// We rely on using the name of the data section as the reference. It
 | 
						|
		// would be nicer to keep the real name in case of an STT_OBJECT, but
 | 
						|
		// it's not clear how to encode that into Instruction.
 | 
						|
		name = target.Name
 | 
						|
 | 
						|
		// The kernel expects the offset in the second basic BPF instruction.
 | 
						|
		ins.Constant = int64(uint64(offset) << 32)
 | 
						|
		ins.Src = asm.PseudoMapValue
 | 
						|
 | 
						|
	case programSection:
 | 
						|
		switch opCode := ins.OpCode; {
 | 
						|
		case opCode.JumpOp() == asm.Call:
 | 
						|
			if ins.Src != asm.PseudoCall {
 | 
						|
				return fmt.Errorf("call: %s: incorrect source register", name)
 | 
						|
			}
 | 
						|
 | 
						|
			switch typ {
 | 
						|
			case elf.STT_NOTYPE, elf.STT_FUNC:
 | 
						|
				if bind != elf.STB_GLOBAL {
 | 
						|
					return fmt.Errorf("call: %s: unsupported binding: %s", name, bind)
 | 
						|
				}
 | 
						|
 | 
						|
			case elf.STT_SECTION:
 | 
						|
				if bind != elf.STB_LOCAL {
 | 
						|
					return fmt.Errorf("call: %s: unsupported binding: %s", name, bind)
 | 
						|
				}
 | 
						|
 | 
						|
				// The function we want to call is in the indicated section,
 | 
						|
				// at the offset encoded in the instruction itself. Reverse
 | 
						|
				// the calculation to find the real function we're looking for.
 | 
						|
				// A value of -1 references the first instruction in the section.
 | 
						|
				offset := int64(int32(ins.Constant)+1) * asm.InstructionSize
 | 
						|
				sym, ok := target.symbols[uint64(offset)]
 | 
						|
				if !ok {
 | 
						|
					return fmt.Errorf("call: no symbol at offset %d", offset)
 | 
						|
				}
 | 
						|
 | 
						|
				name = sym.Name
 | 
						|
				ins.Constant = -1
 | 
						|
 | 
						|
			default:
 | 
						|
				return fmt.Errorf("call: %s: invalid symbol type %s", name, typ)
 | 
						|
			}
 | 
						|
		case opCode.IsDWordLoad():
 | 
						|
			switch typ {
 | 
						|
			case elf.STT_FUNC:
 | 
						|
				if bind != elf.STB_GLOBAL {
 | 
						|
					return fmt.Errorf("load: %s: unsupported binding: %s", name, bind)
 | 
						|
				}
 | 
						|
 | 
						|
			case elf.STT_SECTION:
 | 
						|
				if bind != elf.STB_LOCAL {
 | 
						|
					return fmt.Errorf("load: %s: unsupported binding: %s", name, bind)
 | 
						|
				}
 | 
						|
 | 
						|
				// ins.Constant already contains the offset in bytes from the
 | 
						|
				// start of the section. This is different than a call to a
 | 
						|
				// static function.
 | 
						|
 | 
						|
			default:
 | 
						|
				return fmt.Errorf("load: %s: invalid symbol type %s", name, typ)
 | 
						|
			}
 | 
						|
 | 
						|
			sym, ok := target.symbols[uint64(ins.Constant)]
 | 
						|
			if !ok {
 | 
						|
				return fmt.Errorf("load: no symbol at offset %d", ins.Constant)
 | 
						|
			}
 | 
						|
 | 
						|
			name = sym.Name
 | 
						|
			ins.Constant = -1
 | 
						|
			ins.Src = asm.PseudoFunc
 | 
						|
 | 
						|
		default:
 | 
						|
			return fmt.Errorf("neither a call nor a load instruction: %v", ins)
 | 
						|
		}
 | 
						|
 | 
						|
	case undefSection:
 | 
						|
		if bind != elf.STB_GLOBAL {
 | 
						|
			return fmt.Errorf("asm relocation: %s: unsupported binding: %s", name, bind)
 | 
						|
		}
 | 
						|
 | 
						|
		if typ != elf.STT_NOTYPE {
 | 
						|
			return fmt.Errorf("asm relocation: %s: unsupported type %s", name, typ)
 | 
						|
		}
 | 
						|
 | 
						|
		// There is nothing to do here but set ins.Reference.
 | 
						|
 | 
						|
	default:
 | 
						|
		return fmt.Errorf("relocation to %q: %w", target.Name, ErrNotSupported)
 | 
						|
	}
 | 
						|
 | 
						|
	*ins = ins.WithReference(name)
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
func (ec *elfCode) loadMaps(maps map[string]*MapSpec) error {
 | 
						|
	for _, sec := range ec.sections {
 | 
						|
		if sec.kind != mapSection {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		nSym := len(sec.symbols)
 | 
						|
		if nSym == 0 {
 | 
						|
			return fmt.Errorf("section %v: no symbols", sec.Name)
 | 
						|
		}
 | 
						|
 | 
						|
		if sec.Size%uint64(nSym) != 0 {
 | 
						|
			return fmt.Errorf("section %v: map descriptors are not of equal size", sec.Name)
 | 
						|
		}
 | 
						|
 | 
						|
		var (
 | 
						|
			r    = bufio.NewReader(sec.Open())
 | 
						|
			size = sec.Size / uint64(nSym)
 | 
						|
		)
 | 
						|
		for i, offset := 0, uint64(0); i < nSym; i, offset = i+1, offset+size {
 | 
						|
			mapSym, ok := sec.symbols[offset]
 | 
						|
			if !ok {
 | 
						|
				return fmt.Errorf("section %s: missing symbol for map at offset %d", sec.Name, offset)
 | 
						|
			}
 | 
						|
 | 
						|
			mapName := mapSym.Name
 | 
						|
			if maps[mapName] != nil {
 | 
						|
				return fmt.Errorf("section %v: map %v already exists", sec.Name, mapSym)
 | 
						|
			}
 | 
						|
 | 
						|
			lr := io.LimitReader(r, int64(size))
 | 
						|
 | 
						|
			spec := MapSpec{
 | 
						|
				Name: SanitizeName(mapName, -1),
 | 
						|
			}
 | 
						|
			switch {
 | 
						|
			case binary.Read(lr, ec.ByteOrder, &spec.Type) != nil:
 | 
						|
				return fmt.Errorf("map %s: missing type", mapName)
 | 
						|
			case binary.Read(lr, ec.ByteOrder, &spec.KeySize) != nil:
 | 
						|
				return fmt.Errorf("map %s: missing key size", mapName)
 | 
						|
			case binary.Read(lr, ec.ByteOrder, &spec.ValueSize) != nil:
 | 
						|
				return fmt.Errorf("map %s: missing value size", mapName)
 | 
						|
			case binary.Read(lr, ec.ByteOrder, &spec.MaxEntries) != nil:
 | 
						|
				return fmt.Errorf("map %s: missing max entries", mapName)
 | 
						|
			case binary.Read(lr, ec.ByteOrder, &spec.Flags) != nil:
 | 
						|
				return fmt.Errorf("map %s: missing flags", mapName)
 | 
						|
			}
 | 
						|
 | 
						|
			extra, err := io.ReadAll(lr)
 | 
						|
			if err != nil {
 | 
						|
				return fmt.Errorf("map %s: reading map tail: %w", mapName, err)
 | 
						|
			}
 | 
						|
			if len(extra) > 0 {
 | 
						|
				spec.Extra = bytes.NewReader(extra)
 | 
						|
			}
 | 
						|
 | 
						|
			if err := spec.clampPerfEventArraySize(); err != nil {
 | 
						|
				return fmt.Errorf("map %s: %w", mapName, err)
 | 
						|
			}
 | 
						|
 | 
						|
			maps[mapName] = &spec
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// loadBTFMaps iterates over all ELF sections marked as BTF map sections
 | 
						|
// (like .maps) and parses them into MapSpecs. Dump the .maps section and
 | 
						|
// any relocations with `readelf -x .maps -r <elf_file>`.
 | 
						|
func (ec *elfCode) loadBTFMaps(maps map[string]*MapSpec) error {
 | 
						|
	for _, sec := range ec.sections {
 | 
						|
		if sec.kind != btfMapSection {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		if ec.btf == nil {
 | 
						|
			return fmt.Errorf("missing BTF")
 | 
						|
		}
 | 
						|
 | 
						|
		// Each section must appear as a DataSec in the ELF's BTF blob.
 | 
						|
		var ds *btf.Datasec
 | 
						|
		if err := ec.btf.TypeByName(sec.Name, &ds); err != nil {
 | 
						|
			return fmt.Errorf("cannot find section '%s' in BTF: %w", sec.Name, err)
 | 
						|
		}
 | 
						|
 | 
						|
		// Open a Reader to the ELF's raw section bytes so we can assert that all
 | 
						|
		// of them are zero on a per-map (per-Var) basis. For now, the section's
 | 
						|
		// sole purpose is to receive relocations, so all must be zero.
 | 
						|
		rs := sec.Open()
 | 
						|
 | 
						|
		for _, vs := range ds.Vars {
 | 
						|
			// BPF maps are declared as and assigned to global variables,
 | 
						|
			// so iterate over each Var in the DataSec and validate their types.
 | 
						|
			v, ok := vs.Type.(*btf.Var)
 | 
						|
			if !ok {
 | 
						|
				return fmt.Errorf("section %v: unexpected type %s", sec.Name, vs.Type)
 | 
						|
			}
 | 
						|
			name := string(v.Name)
 | 
						|
 | 
						|
			// The BTF metadata for each Var contains the full length of the map
 | 
						|
			// declaration, so read the corresponding amount of bytes from the ELF.
 | 
						|
			// This way, we can pinpoint which map declaration contains unexpected
 | 
						|
			// (and therefore unsupported) data.
 | 
						|
			_, err := io.Copy(internal.DiscardZeroes{}, io.LimitReader(rs, int64(vs.Size)))
 | 
						|
			if err != nil {
 | 
						|
				return fmt.Errorf("section %v: map %s: initializing BTF map definitions: %w", sec.Name, name, internal.ErrNotSupported)
 | 
						|
			}
 | 
						|
 | 
						|
			if maps[name] != nil {
 | 
						|
				return fmt.Errorf("section %v: map %s already exists", sec.Name, name)
 | 
						|
			}
 | 
						|
 | 
						|
			// Each Var representing a BTF map definition contains a Struct.
 | 
						|
			mapStruct, ok := v.Type.(*btf.Struct)
 | 
						|
			if !ok {
 | 
						|
				return fmt.Errorf("expected struct, got %s", v.Type)
 | 
						|
			}
 | 
						|
 | 
						|
			mapSpec, err := mapSpecFromBTF(sec, &vs, mapStruct, ec.btf, name, false)
 | 
						|
			if err != nil {
 | 
						|
				return fmt.Errorf("map %v: %w", name, err)
 | 
						|
			}
 | 
						|
 | 
						|
			if err := mapSpec.clampPerfEventArraySize(); err != nil {
 | 
						|
				return fmt.Errorf("map %v: %w", name, err)
 | 
						|
			}
 | 
						|
 | 
						|
			maps[name] = mapSpec
 | 
						|
		}
 | 
						|
 | 
						|
		// Drain the ELF section reader to make sure all bytes are accounted for
 | 
						|
		// with BTF metadata.
 | 
						|
		i, err := io.Copy(io.Discard, rs)
 | 
						|
		if err != nil {
 | 
						|
			return fmt.Errorf("section %v: unexpected error reading remainder of ELF section: %w", sec.Name, err)
 | 
						|
		}
 | 
						|
		if i > 0 {
 | 
						|
			return fmt.Errorf("section %v: %d unexpected remaining bytes in ELF section, invalid BTF?", sec.Name, i)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
// mapSpecFromBTF produces a MapSpec based on a btf.Struct def representing
 | 
						|
// a BTF map definition. The name and spec arguments will be copied to the
 | 
						|
// resulting MapSpec, and inner must be true on any resursive invocations.
 | 
						|
func mapSpecFromBTF(es *elfSection, vs *btf.VarSecinfo, def *btf.Struct, spec *btf.Spec, name string, inner bool) (*MapSpec, error) {
 | 
						|
	var (
 | 
						|
		key, value         btf.Type
 | 
						|
		keySize, valueSize uint32
 | 
						|
		mapType            MapType
 | 
						|
		flags, maxEntries  uint32
 | 
						|
		pinType            PinType
 | 
						|
		innerMapSpec       *MapSpec
 | 
						|
		contents           []MapKV
 | 
						|
		err                error
 | 
						|
	)
 | 
						|
 | 
						|
	for i, member := range def.Members {
 | 
						|
		switch member.Name {
 | 
						|
		case "type":
 | 
						|
			mt, err := uintFromBTF(member.Type)
 | 
						|
			if err != nil {
 | 
						|
				return nil, fmt.Errorf("can't get type: %w", err)
 | 
						|
			}
 | 
						|
			mapType = MapType(mt)
 | 
						|
 | 
						|
		case "map_flags":
 | 
						|
			flags, err = uintFromBTF(member.Type)
 | 
						|
			if err != nil {
 | 
						|
				return nil, fmt.Errorf("can't get BTF map flags: %w", err)
 | 
						|
			}
 | 
						|
 | 
						|
		case "max_entries":
 | 
						|
			maxEntries, err = uintFromBTF(member.Type)
 | 
						|
			if err != nil {
 | 
						|
				return nil, fmt.Errorf("can't get BTF map max entries: %w", err)
 | 
						|
			}
 | 
						|
 | 
						|
		case "key":
 | 
						|
			if keySize != 0 {
 | 
						|
				return nil, errors.New("both key and key_size given")
 | 
						|
			}
 | 
						|
 | 
						|
			pk, ok := member.Type.(*btf.Pointer)
 | 
						|
			if !ok {
 | 
						|
				return nil, fmt.Errorf("key type is not a pointer: %T", member.Type)
 | 
						|
			}
 | 
						|
 | 
						|
			key = pk.Target
 | 
						|
 | 
						|
			size, err := btf.Sizeof(pk.Target)
 | 
						|
			if err != nil {
 | 
						|
				return nil, fmt.Errorf("can't get size of BTF key: %w", err)
 | 
						|
			}
 | 
						|
 | 
						|
			keySize = uint32(size)
 | 
						|
 | 
						|
		case "value":
 | 
						|
			if valueSize != 0 {
 | 
						|
				return nil, errors.New("both value and value_size given")
 | 
						|
			}
 | 
						|
 | 
						|
			vk, ok := member.Type.(*btf.Pointer)
 | 
						|
			if !ok {
 | 
						|
				return nil, fmt.Errorf("value type is not a pointer: %T", member.Type)
 | 
						|
			}
 | 
						|
 | 
						|
			value = vk.Target
 | 
						|
 | 
						|
			size, err := btf.Sizeof(vk.Target)
 | 
						|
			if err != nil {
 | 
						|
				return nil, fmt.Errorf("can't get size of BTF value: %w", err)
 | 
						|
			}
 | 
						|
 | 
						|
			valueSize = uint32(size)
 | 
						|
 | 
						|
		case "key_size":
 | 
						|
			// Key needs to be nil and keySize needs to be 0 for key_size to be
 | 
						|
			// considered a valid member.
 | 
						|
			if key != nil || keySize != 0 {
 | 
						|
				return nil, errors.New("both key and key_size given")
 | 
						|
			}
 | 
						|
 | 
						|
			keySize, err = uintFromBTF(member.Type)
 | 
						|
			if err != nil {
 | 
						|
				return nil, fmt.Errorf("can't get BTF key size: %w", err)
 | 
						|
			}
 | 
						|
 | 
						|
		case "value_size":
 | 
						|
			// Value needs to be nil and valueSize needs to be 0 for value_size to be
 | 
						|
			// considered a valid member.
 | 
						|
			if value != nil || valueSize != 0 {
 | 
						|
				return nil, errors.New("both value and value_size given")
 | 
						|
			}
 | 
						|
 | 
						|
			valueSize, err = uintFromBTF(member.Type)
 | 
						|
			if err != nil {
 | 
						|
				return nil, fmt.Errorf("can't get BTF value size: %w", err)
 | 
						|
			}
 | 
						|
 | 
						|
		case "pinning":
 | 
						|
			if inner {
 | 
						|
				return nil, errors.New("inner maps can't be pinned")
 | 
						|
			}
 | 
						|
 | 
						|
			pinning, err := uintFromBTF(member.Type)
 | 
						|
			if err != nil {
 | 
						|
				return nil, fmt.Errorf("can't get pinning: %w", err)
 | 
						|
			}
 | 
						|
 | 
						|
			pinType = PinType(pinning)
 | 
						|
 | 
						|
		case "values":
 | 
						|
			// The 'values' field in BTF map definitions is used for declaring map
 | 
						|
			// value types that are references to other BPF objects, like other maps
 | 
						|
			// or programs. It is always expected to be an array of pointers.
 | 
						|
			if i != len(def.Members)-1 {
 | 
						|
				return nil, errors.New("'values' must be the last member in a BTF map definition")
 | 
						|
			}
 | 
						|
 | 
						|
			if valueSize != 0 && valueSize != 4 {
 | 
						|
				return nil, errors.New("value_size must be 0 or 4")
 | 
						|
			}
 | 
						|
			valueSize = 4
 | 
						|
 | 
						|
			valueType, err := resolveBTFArrayMacro(member.Type)
 | 
						|
			if err != nil {
 | 
						|
				return nil, fmt.Errorf("can't resolve type of member 'values': %w", err)
 | 
						|
			}
 | 
						|
 | 
						|
			switch t := valueType.(type) {
 | 
						|
			case *btf.Struct:
 | 
						|
				// The values member pointing to an array of structs means we're expecting
 | 
						|
				// a map-in-map declaration.
 | 
						|
				if mapType != ArrayOfMaps && mapType != HashOfMaps {
 | 
						|
					return nil, errors.New("outer map needs to be an array or a hash of maps")
 | 
						|
				}
 | 
						|
				if inner {
 | 
						|
					return nil, fmt.Errorf("nested inner maps are not supported")
 | 
						|
				}
 | 
						|
 | 
						|
				// This inner map spec is used as a map template, but it needs to be
 | 
						|
				// created as a traditional map before it can be used to do so.
 | 
						|
				// libbpf names the inner map template '<outer_name>.inner', but we
 | 
						|
				// opted for _inner to simplify validation logic. (dots only supported
 | 
						|
				// on kernels 5.2 and up)
 | 
						|
				// Pass the BTF spec from the parent object, since both parent and
 | 
						|
				// child must be created from the same BTF blob (on kernels that support BTF).
 | 
						|
				innerMapSpec, err = mapSpecFromBTF(es, vs, t, spec, name+"_inner", true)
 | 
						|
				if err != nil {
 | 
						|
					return nil, fmt.Errorf("can't parse BTF map definition of inner map: %w", err)
 | 
						|
				}
 | 
						|
 | 
						|
			case *btf.FuncProto:
 | 
						|
				// The values member contains an array of function pointers, meaning an
 | 
						|
				// autopopulated PROG_ARRAY.
 | 
						|
				if mapType != ProgramArray {
 | 
						|
					return nil, errors.New("map needs to be a program array")
 | 
						|
				}
 | 
						|
 | 
						|
			default:
 | 
						|
				return nil, fmt.Errorf("unsupported value type %q in 'values' field", t)
 | 
						|
			}
 | 
						|
 | 
						|
			contents, err = resolveBTFValuesContents(es, vs, member)
 | 
						|
			if err != nil {
 | 
						|
				return nil, fmt.Errorf("resolving values contents: %w", err)
 | 
						|
			}
 | 
						|
 | 
						|
		default:
 | 
						|
			return nil, fmt.Errorf("unrecognized field %s in BTF map definition", member.Name)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if key == nil {
 | 
						|
		key = &btf.Void{}
 | 
						|
	}
 | 
						|
	if value == nil {
 | 
						|
		value = &btf.Void{}
 | 
						|
	}
 | 
						|
 | 
						|
	return &MapSpec{
 | 
						|
		Name:       SanitizeName(name, -1),
 | 
						|
		Type:       MapType(mapType),
 | 
						|
		KeySize:    keySize,
 | 
						|
		ValueSize:  valueSize,
 | 
						|
		MaxEntries: maxEntries,
 | 
						|
		Flags:      flags,
 | 
						|
		Key:        key,
 | 
						|
		Value:      value,
 | 
						|
		BTF:        spec,
 | 
						|
		Pinning:    pinType,
 | 
						|
		InnerMap:   innerMapSpec,
 | 
						|
		Contents:   contents,
 | 
						|
	}, nil
 | 
						|
}
 | 
						|
 | 
						|
// uintFromBTF resolves the __uint macro, which is a pointer to a sized
 | 
						|
// array, e.g. for int (*foo)[10], this function will return 10.
 | 
						|
func uintFromBTF(typ btf.Type) (uint32, error) {
 | 
						|
	ptr, ok := typ.(*btf.Pointer)
 | 
						|
	if !ok {
 | 
						|
		return 0, fmt.Errorf("not a pointer: %v", typ)
 | 
						|
	}
 | 
						|
 | 
						|
	arr, ok := ptr.Target.(*btf.Array)
 | 
						|
	if !ok {
 | 
						|
		return 0, fmt.Errorf("not a pointer to array: %v", typ)
 | 
						|
	}
 | 
						|
 | 
						|
	return arr.Nelems, nil
 | 
						|
}
 | 
						|
 | 
						|
// resolveBTFArrayMacro resolves the __array macro, which declares an array
 | 
						|
// of pointers to a given type. This function returns the target Type of
 | 
						|
// the pointers in the array.
 | 
						|
func resolveBTFArrayMacro(typ btf.Type) (btf.Type, error) {
 | 
						|
	arr, ok := typ.(*btf.Array)
 | 
						|
	if !ok {
 | 
						|
		return nil, fmt.Errorf("not an array: %v", typ)
 | 
						|
	}
 | 
						|
 | 
						|
	ptr, ok := arr.Type.(*btf.Pointer)
 | 
						|
	if !ok {
 | 
						|
		return nil, fmt.Errorf("not an array of pointers: %v", typ)
 | 
						|
	}
 | 
						|
 | 
						|
	return ptr.Target, nil
 | 
						|
}
 | 
						|
 | 
						|
// resolveBTFValuesContents resolves relocations into ELF sections belonging
 | 
						|
// to btf.VarSecinfo's. This can be used on the 'values' member in BTF map
 | 
						|
// definitions to extract static declarations of map contents.
 | 
						|
func resolveBTFValuesContents(es *elfSection, vs *btf.VarSecinfo, member btf.Member) ([]MapKV, error) {
 | 
						|
	// The elements of a .values pointer array are not encoded in BTF.
 | 
						|
	// Instead, relocations are generated into each array index.
 | 
						|
	// However, it's possible to leave certain array indices empty, so all
 | 
						|
	// indices' offsets need to be checked for emitted relocations.
 | 
						|
 | 
						|
	// The offset of the 'values' member within the _struct_ (in bits)
 | 
						|
	// is the starting point of the array. Convert to bytes. Add VarSecinfo
 | 
						|
	// offset to get the absolute position in the ELF blob.
 | 
						|
	start := member.Offset.Bytes() + vs.Offset
 | 
						|
	// 'values' is encoded in BTF as a zero (variable) length struct
 | 
						|
	// member, and its contents run until the end of the VarSecinfo.
 | 
						|
	// Add VarSecinfo offset to get the absolute position in the ELF blob.
 | 
						|
	end := vs.Size + vs.Offset
 | 
						|
	// The size of an address in this section. This determines the width of
 | 
						|
	// an index in the array.
 | 
						|
	align := uint32(es.SectionHeader.Addralign)
 | 
						|
 | 
						|
	// Check if variable-length section is aligned.
 | 
						|
	if (end-start)%align != 0 {
 | 
						|
		return nil, errors.New("unaligned static values section")
 | 
						|
	}
 | 
						|
	elems := (end - start) / align
 | 
						|
 | 
						|
	if elems == 0 {
 | 
						|
		return nil, nil
 | 
						|
	}
 | 
						|
 | 
						|
	contents := make([]MapKV, 0, elems)
 | 
						|
 | 
						|
	// k is the array index, off is its corresponding ELF section offset.
 | 
						|
	for k, off := uint32(0), start; k < elems; k, off = k+1, off+align {
 | 
						|
		r, ok := es.relocations[uint64(off)]
 | 
						|
		if !ok {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		// Relocation exists for the current offset in the ELF section.
 | 
						|
		// Emit a value stub based on the type of relocation to be replaced by
 | 
						|
		// a real fd later in the pipeline before populating the map.
 | 
						|
		// Map keys are encoded in MapKV entries, so empty array indices are
 | 
						|
		// skipped here.
 | 
						|
		switch t := elf.ST_TYPE(r.Info); t {
 | 
						|
		case elf.STT_FUNC:
 | 
						|
			contents = append(contents, MapKV{uint32(k), r.Name})
 | 
						|
		case elf.STT_OBJECT:
 | 
						|
			contents = append(contents, MapKV{uint32(k), r.Name})
 | 
						|
		default:
 | 
						|
			return nil, fmt.Errorf("unknown relocation type %v", t)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return contents, nil
 | 
						|
}
 | 
						|
 | 
						|
func (ec *elfCode) loadDataSections(maps map[string]*MapSpec) error {
 | 
						|
	for _, sec := range ec.sections {
 | 
						|
		if sec.kind != dataSection {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		if sec.references == 0 {
 | 
						|
			// Prune data sections which are not referenced by any
 | 
						|
			// instructions.
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		data, err := sec.Data()
 | 
						|
		if err != nil {
 | 
						|
			return fmt.Errorf("data section %s: can't get contents: %w", sec.Name, err)
 | 
						|
		}
 | 
						|
 | 
						|
		if uint64(len(data)) > math.MaxUint32 {
 | 
						|
			return fmt.Errorf("data section %s: contents exceed maximum size", sec.Name)
 | 
						|
		}
 | 
						|
 | 
						|
		mapSpec := &MapSpec{
 | 
						|
			Name:       SanitizeName(sec.Name, -1),
 | 
						|
			Type:       Array,
 | 
						|
			KeySize:    4,
 | 
						|
			ValueSize:  uint32(len(data)),
 | 
						|
			MaxEntries: 1,
 | 
						|
			Contents:   []MapKV{{uint32(0), data}},
 | 
						|
		}
 | 
						|
 | 
						|
		// It is possible for a data section to exist without a corresponding BTF Datasec
 | 
						|
		// if it only contains anonymous values like macro-defined arrays.
 | 
						|
		if ec.btf != nil {
 | 
						|
			var ds *btf.Datasec
 | 
						|
			if ec.btf.TypeByName(sec.Name, &ds) == nil {
 | 
						|
				// Assign the spec's key and BTF only if the Datasec lookup was successful.
 | 
						|
				mapSpec.BTF = ec.btf
 | 
						|
				mapSpec.Key = &btf.Void{}
 | 
						|
				mapSpec.Value = ds
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		switch n := sec.Name; {
 | 
						|
		case strings.HasPrefix(n, ".rodata"):
 | 
						|
			mapSpec.Flags = unix.BPF_F_RDONLY_PROG
 | 
						|
			mapSpec.Freeze = true
 | 
						|
		case n == ".bss":
 | 
						|
			// The kernel already zero-initializes the map
 | 
						|
			mapSpec.Contents = nil
 | 
						|
		}
 | 
						|
 | 
						|
		maps[sec.Name] = mapSpec
 | 
						|
	}
 | 
						|
	return nil
 | 
						|
}
 | 
						|
 | 
						|
func getProgType(sectionName string) (ProgramType, AttachType, uint32, string) {
 | 
						|
	types := []struct {
 | 
						|
		prefix     string
 | 
						|
		progType   ProgramType
 | 
						|
		attachType AttachType
 | 
						|
		progFlags  uint32
 | 
						|
	}{
 | 
						|
		// Please update the types from libbpf.c and follow the order of it.
 | 
						|
		// https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/tools/lib/bpf/libbpf.c
 | 
						|
		{"socket", SocketFilter, AttachNone, 0},
 | 
						|
		{"sk_reuseport/migrate", SkReuseport, AttachSkReuseportSelectOrMigrate, 0},
 | 
						|
		{"sk_reuseport", SkReuseport, AttachSkReuseportSelect, 0},
 | 
						|
		{"kprobe/", Kprobe, AttachNone, 0},
 | 
						|
		{"uprobe/", Kprobe, AttachNone, 0},
 | 
						|
		{"kretprobe/", Kprobe, AttachNone, 0},
 | 
						|
		{"uretprobe/", Kprobe, AttachNone, 0},
 | 
						|
		{"tc", SchedCLS, AttachNone, 0},
 | 
						|
		{"classifier", SchedCLS, AttachNone, 0},
 | 
						|
		{"action", SchedACT, AttachNone, 0},
 | 
						|
		{"tracepoint/", TracePoint, AttachNone, 0},
 | 
						|
		{"tp/", TracePoint, AttachNone, 0},
 | 
						|
		{"raw_tracepoint/", RawTracepoint, AttachNone, 0},
 | 
						|
		{"raw_tp/", RawTracepoint, AttachNone, 0},
 | 
						|
		{"raw_tracepoint.w/", RawTracepointWritable, AttachNone, 0},
 | 
						|
		{"raw_tp.w/", RawTracepointWritable, AttachNone, 0},
 | 
						|
		{"tp_btf/", Tracing, AttachTraceRawTp, 0},
 | 
						|
		{"fentry/", Tracing, AttachTraceFEntry, 0},
 | 
						|
		{"fmod_ret/", Tracing, AttachModifyReturn, 0},
 | 
						|
		{"fexit/", Tracing, AttachTraceFExit, 0},
 | 
						|
		{"fentry.s/", Tracing, AttachTraceFEntry, unix.BPF_F_SLEEPABLE},
 | 
						|
		{"fmod_ret.s/", Tracing, AttachModifyReturn, unix.BPF_F_SLEEPABLE},
 | 
						|
		{"fexit.s/", Tracing, AttachTraceFExit, unix.BPF_F_SLEEPABLE},
 | 
						|
		{"freplace/", Extension, AttachNone, 0},
 | 
						|
		{"lsm/", LSM, AttachLSMMac, 0},
 | 
						|
		{"lsm.s/", LSM, AttachLSMMac, unix.BPF_F_SLEEPABLE},
 | 
						|
		{"iter/", Tracing, AttachTraceIter, 0},
 | 
						|
		{"syscall", Syscall, AttachNone, 0},
 | 
						|
		{"xdp_devmap/", XDP, AttachXDPDevMap, 0},
 | 
						|
		{"xdp_cpumap/", XDP, AttachXDPCPUMap, 0},
 | 
						|
		{"xdp", XDP, AttachNone, 0},
 | 
						|
		{"perf_event", PerfEvent, AttachNone, 0},
 | 
						|
		{"lwt_in", LWTIn, AttachNone, 0},
 | 
						|
		{"lwt_out", LWTOut, AttachNone, 0},
 | 
						|
		{"lwt_xmit", LWTXmit, AttachNone, 0},
 | 
						|
		{"lwt_seg6local", LWTSeg6Local, AttachNone, 0},
 | 
						|
		{"cgroup_skb/ingress", CGroupSKB, AttachCGroupInetIngress, 0},
 | 
						|
		{"cgroup_skb/egress", CGroupSKB, AttachCGroupInetEgress, 0},
 | 
						|
		{"cgroup/skb", CGroupSKB, AttachNone, 0},
 | 
						|
		{"cgroup/sock_create", CGroupSock, AttachCGroupInetSockCreate, 0},
 | 
						|
		{"cgroup/sock_release", CGroupSock, AttachCgroupInetSockRelease, 0},
 | 
						|
		{"cgroup/sock", CGroupSock, AttachCGroupInetSockCreate, 0},
 | 
						|
		{"cgroup/post_bind4", CGroupSock, AttachCGroupInet4PostBind, 0},
 | 
						|
		{"cgroup/post_bind6", CGroupSock, AttachCGroupInet6PostBind, 0},
 | 
						|
		{"cgroup/dev", CGroupDevice, AttachCGroupDevice, 0},
 | 
						|
		{"sockops", SockOps, AttachCGroupSockOps, 0},
 | 
						|
		{"sk_skb/stream_parser", SkSKB, AttachSkSKBStreamParser, 0},
 | 
						|
		{"sk_skb/stream_verdict", SkSKB, AttachSkSKBStreamVerdict, 0},
 | 
						|
		{"sk_skb", SkSKB, AttachNone, 0},
 | 
						|
		{"sk_msg", SkMsg, AttachSkMsgVerdict, 0},
 | 
						|
		{"lirc_mode2", LircMode2, AttachLircMode2, 0},
 | 
						|
		{"flow_dissector", FlowDissector, AttachFlowDissector, 0},
 | 
						|
		{"cgroup/bind4", CGroupSockAddr, AttachCGroupInet4Bind, 0},
 | 
						|
		{"cgroup/bind6", CGroupSockAddr, AttachCGroupInet6Bind, 0},
 | 
						|
		{"cgroup/connect4", CGroupSockAddr, AttachCGroupInet4Connect, 0},
 | 
						|
		{"cgroup/connect6", CGroupSockAddr, AttachCGroupInet6Connect, 0},
 | 
						|
		{"cgroup/sendmsg4", CGroupSockAddr, AttachCGroupUDP4Sendmsg, 0},
 | 
						|
		{"cgroup/sendmsg6", CGroupSockAddr, AttachCGroupUDP6Sendmsg, 0},
 | 
						|
		{"cgroup/recvmsg4", CGroupSockAddr, AttachCGroupUDP4Recvmsg, 0},
 | 
						|
		{"cgroup/recvmsg6", CGroupSockAddr, AttachCGroupUDP6Recvmsg, 0},
 | 
						|
		{"cgroup/getpeername4", CGroupSockAddr, AttachCgroupInet4GetPeername, 0},
 | 
						|
		{"cgroup/getpeername6", CGroupSockAddr, AttachCgroupInet6GetPeername, 0},
 | 
						|
		{"cgroup/getsockname4", CGroupSockAddr, AttachCgroupInet4GetSockname, 0},
 | 
						|
		{"cgroup/getsockname6", CGroupSockAddr, AttachCgroupInet6GetSockname, 0},
 | 
						|
		{"cgroup/sysctl", CGroupSysctl, AttachCGroupSysctl, 0},
 | 
						|
		{"cgroup/getsockopt", CGroupSockopt, AttachCGroupGetsockopt, 0},
 | 
						|
		{"cgroup/setsockopt", CGroupSockopt, AttachCGroupSetsockopt, 0},
 | 
						|
		{"struct_ops+", StructOps, AttachNone, 0},
 | 
						|
		{"sk_lookup/", SkLookup, AttachSkLookup, 0},
 | 
						|
 | 
						|
		{"seccomp", SocketFilter, AttachNone, 0},
 | 
						|
	}
 | 
						|
 | 
						|
	for _, t := range types {
 | 
						|
		if !strings.HasPrefix(sectionName, t.prefix) {
 | 
						|
			continue
 | 
						|
		}
 | 
						|
 | 
						|
		if !strings.HasSuffix(t.prefix, "/") {
 | 
						|
			return t.progType, t.attachType, t.progFlags, ""
 | 
						|
		}
 | 
						|
 | 
						|
		return t.progType, t.attachType, t.progFlags, sectionName[len(t.prefix):]
 | 
						|
	}
 | 
						|
 | 
						|
	return UnspecifiedProgram, AttachNone, 0, ""
 | 
						|
}
 | 
						|
 | 
						|
func (ec *elfCode) loadSectionRelocations(sec *elf.Section, symbols []elf.Symbol) (map[uint64]elf.Symbol, error) {
 | 
						|
	rels := make(map[uint64]elf.Symbol)
 | 
						|
 | 
						|
	if sec.Entsize < 16 {
 | 
						|
		return nil, fmt.Errorf("section %s: relocations are less than 16 bytes", sec.Name)
 | 
						|
	}
 | 
						|
 | 
						|
	r := bufio.NewReader(sec.Open())
 | 
						|
	for off := uint64(0); off < sec.Size; off += sec.Entsize {
 | 
						|
		ent := io.LimitReader(r, int64(sec.Entsize))
 | 
						|
 | 
						|
		var rel elf.Rel64
 | 
						|
		if binary.Read(ent, ec.ByteOrder, &rel) != nil {
 | 
						|
			return nil, fmt.Errorf("can't parse relocation at offset %v", off)
 | 
						|
		}
 | 
						|
 | 
						|
		symNo := int(elf.R_SYM64(rel.Info) - 1)
 | 
						|
		if symNo >= len(symbols) {
 | 
						|
			return nil, fmt.Errorf("offset %d: symbol %d doesn't exist", off, symNo)
 | 
						|
		}
 | 
						|
 | 
						|
		symbol := symbols[symNo]
 | 
						|
		rels[rel.Off] = symbol
 | 
						|
	}
 | 
						|
 | 
						|
	return rels, nil
 | 
						|
}
 |