mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-11-02 16:52:25 -06:00 
			
		
		
		
	* start fixing up tests * fix up tests + automate with drone * fiddle with linting * messing about with drone.yml * some more fiddling * hmmm * add cache * add vendor directory * verbose * ci updates * update some little things * update sig
		
			
				
	
	
		
			183 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			183 lines
		
	
	
	
		
			4.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2014 Google Inc. All rights reserved.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
package r3
 | 
						|
 | 
						|
import (
 | 
						|
	"fmt"
 | 
						|
	"math"
 | 
						|
 | 
						|
	"github.com/golang/geo/s1"
 | 
						|
)
 | 
						|
 | 
						|
// Vector represents a point in ℝ³.
 | 
						|
type Vector struct {
 | 
						|
	X, Y, Z float64
 | 
						|
}
 | 
						|
 | 
						|
// ApproxEqual reports whether v and ov are equal within a small epsilon.
 | 
						|
func (v Vector) ApproxEqual(ov Vector) bool {
 | 
						|
	const epsilon = 1e-16
 | 
						|
	return math.Abs(v.X-ov.X) < epsilon && math.Abs(v.Y-ov.Y) < epsilon && math.Abs(v.Z-ov.Z) < epsilon
 | 
						|
}
 | 
						|
 | 
						|
func (v Vector) String() string { return fmt.Sprintf("(%0.24f, %0.24f, %0.24f)", v.X, v.Y, v.Z) }
 | 
						|
 | 
						|
// Norm returns the vector's norm.
 | 
						|
func (v Vector) Norm() float64 { return math.Sqrt(v.Dot(v)) }
 | 
						|
 | 
						|
// Norm2 returns the square of the norm.
 | 
						|
func (v Vector) Norm2() float64 { return v.Dot(v) }
 | 
						|
 | 
						|
// Normalize returns a unit vector in the same direction as v.
 | 
						|
func (v Vector) Normalize() Vector {
 | 
						|
	n2 := v.Norm2()
 | 
						|
	if n2 == 0 {
 | 
						|
		return Vector{0, 0, 0}
 | 
						|
	}
 | 
						|
	return v.Mul(1 / math.Sqrt(n2))
 | 
						|
}
 | 
						|
 | 
						|
// IsUnit returns whether this vector is of approximately unit length.
 | 
						|
func (v Vector) IsUnit() bool {
 | 
						|
	const epsilon = 5e-14
 | 
						|
	return math.Abs(v.Norm2()-1) <= epsilon
 | 
						|
}
 | 
						|
 | 
						|
// Abs returns the vector with nonnegative components.
 | 
						|
func (v Vector) Abs() Vector { return Vector{math.Abs(v.X), math.Abs(v.Y), math.Abs(v.Z)} }
 | 
						|
 | 
						|
// Add returns the standard vector sum of v and ov.
 | 
						|
func (v Vector) Add(ov Vector) Vector { return Vector{v.X + ov.X, v.Y + ov.Y, v.Z + ov.Z} }
 | 
						|
 | 
						|
// Sub returns the standard vector difference of v and ov.
 | 
						|
func (v Vector) Sub(ov Vector) Vector { return Vector{v.X - ov.X, v.Y - ov.Y, v.Z - ov.Z} }
 | 
						|
 | 
						|
// Mul returns the standard scalar product of v and m.
 | 
						|
func (v Vector) Mul(m float64) Vector { return Vector{m * v.X, m * v.Y, m * v.Z} }
 | 
						|
 | 
						|
// Dot returns the standard dot product of v and ov.
 | 
						|
func (v Vector) Dot(ov Vector) float64 { return v.X*ov.X + v.Y*ov.Y + v.Z*ov.Z }
 | 
						|
 | 
						|
// Cross returns the standard cross product of v and ov.
 | 
						|
func (v Vector) Cross(ov Vector) Vector {
 | 
						|
	return Vector{
 | 
						|
		v.Y*ov.Z - v.Z*ov.Y,
 | 
						|
		v.Z*ov.X - v.X*ov.Z,
 | 
						|
		v.X*ov.Y - v.Y*ov.X,
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Distance returns the Euclidean distance between v and ov.
 | 
						|
func (v Vector) Distance(ov Vector) float64 { return v.Sub(ov).Norm() }
 | 
						|
 | 
						|
// Angle returns the angle between v and ov.
 | 
						|
func (v Vector) Angle(ov Vector) s1.Angle {
 | 
						|
	return s1.Angle(math.Atan2(v.Cross(ov).Norm(), v.Dot(ov))) * s1.Radian
 | 
						|
}
 | 
						|
 | 
						|
// Axis enumerates the 3 axes of ℝ³.
 | 
						|
type Axis int
 | 
						|
 | 
						|
// The three axes of ℝ³.
 | 
						|
const (
 | 
						|
	XAxis Axis = iota
 | 
						|
	YAxis
 | 
						|
	ZAxis
 | 
						|
)
 | 
						|
 | 
						|
// Ortho returns a unit vector that is orthogonal to v.
 | 
						|
// Ortho(-v) = -Ortho(v) for all v.
 | 
						|
func (v Vector) Ortho() Vector {
 | 
						|
	ov := Vector{0.012, 0.0053, 0.00457}
 | 
						|
	switch v.LargestComponent() {
 | 
						|
	case XAxis:
 | 
						|
		ov.Z = 1
 | 
						|
	case YAxis:
 | 
						|
		ov.X = 1
 | 
						|
	default:
 | 
						|
		ov.Y = 1
 | 
						|
	}
 | 
						|
	return v.Cross(ov).Normalize()
 | 
						|
}
 | 
						|
 | 
						|
// LargestComponent returns the axis that represents the largest component in this vector.
 | 
						|
func (v Vector) LargestComponent() Axis {
 | 
						|
	t := v.Abs()
 | 
						|
 | 
						|
	if t.X > t.Y {
 | 
						|
		if t.X > t.Z {
 | 
						|
			return XAxis
 | 
						|
		}
 | 
						|
		return ZAxis
 | 
						|
	}
 | 
						|
	if t.Y > t.Z {
 | 
						|
		return YAxis
 | 
						|
	}
 | 
						|
	return ZAxis
 | 
						|
}
 | 
						|
 | 
						|
// SmallestComponent returns the axis that represents the smallest component in this vector.
 | 
						|
func (v Vector) SmallestComponent() Axis {
 | 
						|
	t := v.Abs()
 | 
						|
 | 
						|
	if t.X < t.Y {
 | 
						|
		if t.X < t.Z {
 | 
						|
			return XAxis
 | 
						|
		}
 | 
						|
		return ZAxis
 | 
						|
	}
 | 
						|
	if t.Y < t.Z {
 | 
						|
		return YAxis
 | 
						|
	}
 | 
						|
	return ZAxis
 | 
						|
}
 | 
						|
 | 
						|
// Cmp compares v and ov lexicographically and returns:
 | 
						|
//
 | 
						|
//   -1 if v <  ov
 | 
						|
//    0 if v == ov
 | 
						|
//   +1 if v >  ov
 | 
						|
//
 | 
						|
// This method is based on C++'s std::lexicographical_compare. Two entities
 | 
						|
// are compared element by element with the given operator. The first mismatch
 | 
						|
// defines which is less (or greater) than the other. If both have equivalent
 | 
						|
// values they are lexicographically equal.
 | 
						|
func (v Vector) Cmp(ov Vector) int {
 | 
						|
	if v.X < ov.X {
 | 
						|
		return -1
 | 
						|
	}
 | 
						|
	if v.X > ov.X {
 | 
						|
		return 1
 | 
						|
	}
 | 
						|
 | 
						|
	// First elements were the same, try the next.
 | 
						|
	if v.Y < ov.Y {
 | 
						|
		return -1
 | 
						|
	}
 | 
						|
	if v.Y > ov.Y {
 | 
						|
		return 1
 | 
						|
	}
 | 
						|
 | 
						|
	// Second elements were the same return the final compare.
 | 
						|
	if v.Z < ov.Z {
 | 
						|
		return -1
 | 
						|
	}
 | 
						|
	if v.Z > ov.Z {
 | 
						|
		return 1
 | 
						|
	}
 | 
						|
 | 
						|
	// Both are equal
 | 
						|
	return 0
 | 
						|
}
 |