mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-31 14:12:26 -05:00 
			
		
		
		
	- github.com/KimMachineGun/automemlimit v0.7.2 => v0.7.3
- github.com/gin-contrib/cors v1.7.5 => v1.7.6
- github.com/minio/minio-go/v7 v7.0.92 => v7.0.94
- github.com/spf13/cast v1.8.0 => v1.9.2
- github.com/uptrace/bun{,/*} v1.2.11 => v1.2.14
- golang.org/x/image v0.27.0 => v0.28.0
- golang.org/x/net v0.40.0 => v0.41.0
- code.superseriousbusiness.org/go-swagger v0.31.0-gts-go1.23-fix => v0.32.3-gts-go1.23-fix
Reviewed-on: https://codeberg.org/superseriousbusiness/gotosocial/pulls/4304
Co-authored-by: kim <grufwub@gmail.com>
Co-committed-by: kim <grufwub@gmail.com>
		
	
			
		
			
				
	
	
		
			1652 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1652 lines
		
	
	
	
		
			44 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| //go:build notmono || codec.notmono
 | |
| 
 | |
| // Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
 | |
| // Use of this source code is governed by a MIT license found in the LICENSE file.
 | |
| 
 | |
| package codec
 | |
| 
 | |
| import (
 | |
| 	"encoding"
 | |
| 	"io"
 | |
| 	"reflect"
 | |
| 	"slices"
 | |
| 	"sort"
 | |
| 	"strconv"
 | |
| 	"sync"
 | |
| 	"time"
 | |
| )
 | |
| 
 | |
| type helperEncDriver[T encDriver] struct{}
 | |
| 
 | |
| // encFn encapsulates the captured variables and the encode function.
 | |
| // This way, we only do some calculations one times, and pass to the
 | |
| // code block that should be called (encapsulated in a function)
 | |
| // instead of executing the checks every time.
 | |
| type encFn[T encDriver] struct {
 | |
| 	i  encFnInfo
 | |
| 	fe func(*encoder[T], *encFnInfo, reflect.Value)
 | |
| 	// _  [1]uint64 // padding (cache-aligned)
 | |
| }
 | |
| 
 | |
| type encRtidFn[T encDriver] struct {
 | |
| 	rtid uintptr
 | |
| 	fn   *encFn[T]
 | |
| }
 | |
| 
 | |
| // Encoder writes an object to an output stream in a supported format.
 | |
| //
 | |
| // Encoder is NOT safe for concurrent use i.e. a Encoder cannot be used
 | |
| // concurrently in multiple goroutines.
 | |
| //
 | |
| // However, as Encoder could be allocation heavy to initialize, a Reset method is provided
 | |
| // so its state can be reused to decode new input streams repeatedly.
 | |
| // This is the idiomatic way to use.
 | |
| type encoder[T encDriver] struct {
 | |
| 	dh helperEncDriver[T]
 | |
| 	fp *fastpathEs[T]
 | |
| 	e  T
 | |
| 	encoderBase
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) rawExt(_ *encFnInfo, rv reflect.Value) {
 | |
| 	if re := rv2i(rv).(*RawExt); re == nil {
 | |
| 		e.e.EncodeNil()
 | |
| 	} else {
 | |
| 		e.e.EncodeRawExt(re)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) ext(f *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeExt(rv2i(rv), f.ti.rt, f.xfTag, f.xfFn)
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) selferMarshal(_ *encFnInfo, rv reflect.Value) {
 | |
| 	rv2i(rv).(Selfer).CodecEncodeSelf(&Encoder{e})
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) binaryMarshal(_ *encFnInfo, rv reflect.Value) {
 | |
| 	bs, fnerr := rv2i(rv).(encoding.BinaryMarshaler).MarshalBinary()
 | |
| 	e.marshalRaw(bs, fnerr)
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) textMarshal(_ *encFnInfo, rv reflect.Value) {
 | |
| 	bs, fnerr := rv2i(rv).(encoding.TextMarshaler).MarshalText()
 | |
| 	e.marshalUtf8(bs, fnerr)
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) jsonMarshal(_ *encFnInfo, rv reflect.Value) {
 | |
| 	bs, fnerr := rv2i(rv).(jsonMarshaler).MarshalJSON()
 | |
| 	e.marshalAsis(bs, fnerr)
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) raw(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.rawBytes(rv2i(rv).(Raw))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) encodeComplex64(v complex64) {
 | |
| 	if imag(v) != 0 {
 | |
| 		halt.errorf("cannot encode complex number: %v, with imaginary values: %v", any(v), any(imag(v)))
 | |
| 	}
 | |
| 	e.e.EncodeFloat32(real(v))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) encodeComplex128(v complex128) {
 | |
| 	if imag(v) != 0 {
 | |
| 		halt.errorf("cannot encode complex number: %v, with imaginary values: %v", any(v), any(imag(v)))
 | |
| 	}
 | |
| 	e.e.EncodeFloat64(real(v))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kBool(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeBool(rvGetBool(rv))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kTime(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeTime(rvGetTime(rv))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kString(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeString(rvGetString(rv))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kFloat32(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeFloat32(rvGetFloat32(rv))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kFloat64(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeFloat64(rvGetFloat64(rv))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kComplex64(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.encodeComplex64(rvGetComplex64(rv))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kComplex128(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.encodeComplex128(rvGetComplex128(rv))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kInt(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeInt(int64(rvGetInt(rv)))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kInt8(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeInt(int64(rvGetInt8(rv)))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kInt16(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeInt(int64(rvGetInt16(rv)))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kInt32(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeInt(int64(rvGetInt32(rv)))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kInt64(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeInt(int64(rvGetInt64(rv)))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kUint(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeUint(uint64(rvGetUint(rv)))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kUint8(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeUint(uint64(rvGetUint8(rv)))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kUint16(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeUint(uint64(rvGetUint16(rv)))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kUint32(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeUint(uint64(rvGetUint32(rv)))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kUint64(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeUint(uint64(rvGetUint64(rv)))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kUintptr(_ *encFnInfo, rv reflect.Value) {
 | |
| 	e.e.EncodeUint(uint64(rvGetUintptr(rv)))
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kSeqFn(rt reflect.Type) (fn *encFn[T]) {
 | |
| 	// if kind is reflect.Interface, do not pre-determine the encoding type,
 | |
| 	// because preEncodeValue may break it down to a concrete type and kInterface will bomb.
 | |
| 	if rt = baseRT(rt); rt.Kind() != reflect.Interface {
 | |
| 		fn = e.fn(rt)
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kArrayWMbs(rv reflect.Value, ti *typeInfo, isSlice bool) {
 | |
| 	var l int
 | |
| 	if isSlice {
 | |
| 		l = rvLenSlice(rv)
 | |
| 	} else {
 | |
| 		l = rv.Len()
 | |
| 	}
 | |
| 	if l == 0 {
 | |
| 		e.e.WriteMapEmpty()
 | |
| 		return
 | |
| 	}
 | |
| 	e.haltOnMbsOddLen(l)
 | |
| 	e.mapStart(l >> 1) // e.mapStart(l / 2)
 | |
| 
 | |
| 	var fn *encFn[T]
 | |
| 	builtin := ti.tielem.flagEncBuiltin
 | |
| 	if !builtin {
 | |
| 		fn = e.kSeqFn(ti.elem)
 | |
| 	}
 | |
| 
 | |
| 	// simulate do...while, since we already handled case of 0-length
 | |
| 	j := 0
 | |
| 	e.c = containerMapKey
 | |
| 	e.e.WriteMapElemKey(true)
 | |
| 	for {
 | |
| 		rvv := rvArrayIndex(rv, j, ti, isSlice)
 | |
| 		if builtin {
 | |
| 			e.encodeIB(rv2i(baseRVRV(rvv)))
 | |
| 		} else {
 | |
| 			e.encodeValue(rvv, fn)
 | |
| 		}
 | |
| 		j++
 | |
| 		if j == l {
 | |
| 			break
 | |
| 		}
 | |
| 		if j&1 == 0 { // j%2 == 0 {
 | |
| 			e.c = containerMapKey
 | |
| 			e.e.WriteMapElemKey(false)
 | |
| 		} else {
 | |
| 			e.mapElemValue()
 | |
| 		}
 | |
| 	}
 | |
| 	e.c = 0
 | |
| 	e.e.WriteMapEnd()
 | |
| 
 | |
| 	// for j := 0; j < l; j++ {
 | |
| 	// 	if j&1 == 0 { // j%2 == 0 {
 | |
| 	// 		e.mapElemKey(j == 0)
 | |
| 	// 	} else {
 | |
| 	// 		e.mapElemValue()
 | |
| 	// 	}
 | |
| 	// 	rvv := rvSliceIndex(rv, j, ti)
 | |
| 	// 	if builtin {
 | |
| 	// 		e.encode(rv2i(baseRVRV(rvv)))
 | |
| 	// 	} else {
 | |
| 	// 		e.encodeValue(rvv, fn)
 | |
| 	// 	}
 | |
| 	// }
 | |
| 	// e.mapEnd()
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kArrayW(rv reflect.Value, ti *typeInfo, isSlice bool) {
 | |
| 	var l int
 | |
| 	if isSlice {
 | |
| 		l = rvLenSlice(rv)
 | |
| 	} else {
 | |
| 		l = rv.Len()
 | |
| 	}
 | |
| 	if l <= 0 {
 | |
| 		e.e.WriteArrayEmpty()
 | |
| 		return
 | |
| 	}
 | |
| 	e.arrayStart(l)
 | |
| 
 | |
| 	var fn *encFn[T]
 | |
| 	if !ti.tielem.flagEncBuiltin {
 | |
| 		fn = e.kSeqFn(ti.elem)
 | |
| 	}
 | |
| 
 | |
| 	j := 0
 | |
| 	e.c = containerArrayElem
 | |
| 	e.e.WriteArrayElem(true)
 | |
| 	builtin := ti.tielem.flagEncBuiltin
 | |
| 	for {
 | |
| 		rvv := rvArrayIndex(rv, j, ti, isSlice)
 | |
| 		if builtin {
 | |
| 			e.encodeIB(rv2i(baseRVRV(rvv)))
 | |
| 		} else {
 | |
| 			e.encodeValue(rvv, fn)
 | |
| 		}
 | |
| 		j++
 | |
| 		if j == l {
 | |
| 			break
 | |
| 		}
 | |
| 		e.c = containerArrayElem
 | |
| 		e.e.WriteArrayElem(false)
 | |
| 	}
 | |
| 
 | |
| 	// if ti.tielem.flagEncBuiltin {
 | |
| 	// 	for j := 0; j < l; j++ {
 | |
| 	// 		e.arrayElem()
 | |
| 	// 		e.encode(rv2i(baseRVRV(rIndex(rv, j, ti))))
 | |
| 	// 	}
 | |
| 	// } else {
 | |
| 	// 	fn := e.kSeqFn(ti.elem)
 | |
| 	// 	for j := 0; j < l; j++ {
 | |
| 	// 		e.arrayElem()
 | |
| 	// 		e.encodeValue(rvArrayIndex(rv, j, ti), fn)
 | |
| 	// 	}
 | |
| 	// }
 | |
| 
 | |
| 	e.c = 0
 | |
| 	e.e.WriteArrayEnd()
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kChan(f *encFnInfo, rv reflect.Value) {
 | |
| 	if f.ti.chandir&uint8(reflect.RecvDir) == 0 {
 | |
| 		halt.errorStr("send-only channel cannot be encoded")
 | |
| 	}
 | |
| 	if !f.ti.mbs && uint8TypId == rt2id(f.ti.elem) {
 | |
| 		e.kSliceBytesChan(rv)
 | |
| 		return
 | |
| 	}
 | |
| 	rtslice := reflect.SliceOf(f.ti.elem)
 | |
| 	rv = chanToSlice(rv, rtslice, e.h.ChanRecvTimeout)
 | |
| 	ti := e.h.getTypeInfo(rt2id(rtslice), rtslice)
 | |
| 	if f.ti.mbs {
 | |
| 		e.kArrayWMbs(rv, ti, true)
 | |
| 	} else {
 | |
| 		e.kArrayW(rv, ti, true)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kSlice(f *encFnInfo, rv reflect.Value) {
 | |
| 	if f.ti.mbs {
 | |
| 		e.kArrayWMbs(rv, f.ti, true)
 | |
| 	} else if f.ti.rtid == uint8SliceTypId || uint8TypId == rt2id(f.ti.elem) {
 | |
| 		// 'uint8TypId == rt2id(f.ti.elem)' checks types having underlying []byte
 | |
| 		e.e.EncodeBytes(rvGetBytes(rv))
 | |
| 	} else {
 | |
| 		e.kArrayW(rv, f.ti, true)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kArray(f *encFnInfo, rv reflect.Value) {
 | |
| 	if f.ti.mbs {
 | |
| 		e.kArrayWMbs(rv, f.ti, false)
 | |
| 	} else if handleBytesWithinKArray && uint8TypId == rt2id(f.ti.elem) {
 | |
| 		e.e.EncodeStringBytesRaw(rvGetArrayBytes(rv, nil)) // bytes from array never nil
 | |
| 	} else {
 | |
| 		e.kArrayW(rv, f.ti, false)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kSliceBytesChan(rv reflect.Value) {
 | |
| 	// do not use range, so that the number of elements encoded
 | |
| 	// does not change, and encoding does not hang waiting on someone to close chan.
 | |
| 
 | |
| 	bs0 := e.blist.peek(32, true)
 | |
| 	bs := bs0
 | |
| 
 | |
| 	irv := rv2i(rv)
 | |
| 	ch, ok := irv.(<-chan byte)
 | |
| 	if !ok {
 | |
| 		ch = irv.(chan byte)
 | |
| 	}
 | |
| 
 | |
| L1:
 | |
| 	switch timeout := e.h.ChanRecvTimeout; {
 | |
| 	case timeout == 0: // only consume available
 | |
| 		for {
 | |
| 			select {
 | |
| 			case b := <-ch:
 | |
| 				bs = append(bs, b)
 | |
| 			default:
 | |
| 				break L1
 | |
| 			}
 | |
| 		}
 | |
| 	case timeout > 0: // consume until timeout
 | |
| 		tt := time.NewTimer(timeout)
 | |
| 		for {
 | |
| 			select {
 | |
| 			case b := <-ch:
 | |
| 				bs = append(bs, b)
 | |
| 			case <-tt.C:
 | |
| 				// close(tt.C)
 | |
| 				break L1
 | |
| 			}
 | |
| 		}
 | |
| 	default: // consume until close
 | |
| 		for b := range ch {
 | |
| 			bs = append(bs, b)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	e.e.EncodeBytes(bs)
 | |
| 	e.blist.put(bs)
 | |
| 	if !byteSliceSameData(bs0, bs) {
 | |
| 		e.blist.put(bs0)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kStructFieldKey(keyType valueType, encName string) {
 | |
| 	// use if (not switch) block, so that branch prediction picks valueTypeString first
 | |
| 	if keyType == valueTypeString {
 | |
| 		e.e.EncodeString(encName)
 | |
| 	} else if keyType == valueTypeInt {
 | |
| 		e.e.EncodeInt(must.Int(strconv.ParseInt(encName, 10, 64)))
 | |
| 	} else if keyType == valueTypeUint {
 | |
| 		e.e.EncodeUint(must.Uint(strconv.ParseUint(encName, 10, 64)))
 | |
| 	} else if keyType == valueTypeFloat {
 | |
| 		e.e.EncodeFloat64(must.Float(strconv.ParseFloat(encName, 64)))
 | |
| 	} else {
 | |
| 		halt.errorStr2("invalid struct key type: ", keyType.String())
 | |
| 	}
 | |
| 	// e.dh.encStructFieldKey(e.e, encName, keyType, encNameAsciiAlphaNum, e.js)
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kStructSimple(f *encFnInfo, rv reflect.Value) {
 | |
| 	_ = e.e // early asserts e, e.e are not nil once
 | |
| 	tisfi := f.ti.sfi.source()
 | |
| 
 | |
| 	// To bypass encodeValue, we need to handle cases where
 | |
| 	// the field is an interface kind. To do this, we need to handle an
 | |
| 	// interface or a pointer to an interface differently.
 | |
| 	//
 | |
| 	// Easiest to just delegate to encodeValue.
 | |
| 
 | |
| 	chkCirRef := e.h.CheckCircularRef
 | |
| 	var si *structFieldInfo
 | |
| 	var j int
 | |
| 	// use value of chkCirRef ie if true, then send the addr of the value
 | |
| 	if f.ti.toArray || e.h.StructToArray { // toArray
 | |
| 		if len(tisfi) == 0 {
 | |
| 			e.e.WriteArrayEmpty()
 | |
| 			return
 | |
| 		}
 | |
| 		e.arrayStart(len(tisfi))
 | |
| 		for j, si = range tisfi {
 | |
| 			e.c = containerArrayElem
 | |
| 			e.e.WriteArrayElem(j == 0)
 | |
| 			if si.encBuiltin {
 | |
| 				e.encodeIB(rv2i(si.fieldNoAlloc(rv, true)))
 | |
| 			} else {
 | |
| 				e.encodeValue(si.fieldNoAlloc(rv, !chkCirRef), nil)
 | |
| 			}
 | |
| 		}
 | |
| 		e.c = 0
 | |
| 		e.e.WriteArrayEnd()
 | |
| 	} else {
 | |
| 		if len(tisfi) == 0 {
 | |
| 			e.e.WriteMapEmpty()
 | |
| 			return
 | |
| 		}
 | |
| 		if e.h.Canonical {
 | |
| 			tisfi = f.ti.sfi.sorted()
 | |
| 		}
 | |
| 		e.mapStart(len(tisfi))
 | |
| 		for j, si = range tisfi {
 | |
| 			e.c = containerMapKey
 | |
| 			e.e.WriteMapElemKey(j == 0)
 | |
| 			e.e.EncodeStringNoEscape4Json(si.encName)
 | |
| 			e.mapElemValue()
 | |
| 			if si.encBuiltin {
 | |
| 				e.encodeIB(rv2i(si.fieldNoAlloc(rv, true)))
 | |
| 			} else {
 | |
| 				e.encodeValue(si.fieldNoAlloc(rv, !chkCirRef), nil)
 | |
| 			}
 | |
| 		}
 | |
| 		e.c = 0
 | |
| 		e.e.WriteMapEnd()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kStruct(f *encFnInfo, rv reflect.Value) {
 | |
| 	_ = e.e // early asserts e, e.e are not nil once
 | |
| 	ti := f.ti
 | |
| 	toMap := !(ti.toArray || e.h.StructToArray)
 | |
| 	var mf map[string]interface{}
 | |
| 	if ti.flagMissingFielder {
 | |
| 		toMap = true
 | |
| 		mf = rv2i(rv).(MissingFielder).CodecMissingFields()
 | |
| 	} else if ti.flagMissingFielderPtr {
 | |
| 		toMap = true
 | |
| 		if rv.CanAddr() {
 | |
| 			mf = rv2i(rvAddr(rv, ti.ptr)).(MissingFielder).CodecMissingFields()
 | |
| 		} else {
 | |
| 			mf = rv2i(e.addrRV(rv, ti.rt, ti.ptr)).(MissingFielder).CodecMissingFields()
 | |
| 		}
 | |
| 	}
 | |
| 	newlen := len(mf)
 | |
| 	tisfi := ti.sfi.source()
 | |
| 	newlen += len(tisfi)
 | |
| 
 | |
| 	var fkvs = e.slist.get(newlen)[:newlen]
 | |
| 
 | |
| 	recur := e.h.RecursiveEmptyCheck
 | |
| 	chkCirRef := e.h.CheckCircularRef
 | |
| 
 | |
| 	var xlen int
 | |
| 
 | |
| 	var kv sfiRv
 | |
| 	var j int
 | |
| 	var sf encStructFieldObj
 | |
| 	if toMap {
 | |
| 		newlen = 0
 | |
| 		if e.h.Canonical {
 | |
| 			tisfi = f.ti.sfi.sorted()
 | |
| 		}
 | |
| 		for _, si := range tisfi {
 | |
| 			// kv.r = si.path.field(rv, false, si.encBuiltin || !chkCirRef)
 | |
| 			// if si.omitEmpty && isEmptyValue(kv.r, e.h.TypeInfos, recur) {
 | |
| 			// 	continue
 | |
| 			// }
 | |
| 			if si.omitEmpty {
 | |
| 				kv.r = si.fieldNoAlloc(rv, false) // test actual field val
 | |
| 				if isEmptyValue(kv.r, e.h.TypeInfos, recur) {
 | |
| 					continue
 | |
| 				}
 | |
| 			} else {
 | |
| 				kv.r = si.fieldNoAlloc(rv, si.encBuiltin || !chkCirRef)
 | |
| 			}
 | |
| 			kv.v = si
 | |
| 			fkvs[newlen] = kv
 | |
| 			newlen++
 | |
| 		}
 | |
| 
 | |
| 		var mf2s []stringIntf
 | |
| 		if len(mf) != 0 {
 | |
| 			mf2s = make([]stringIntf, 0, len(mf))
 | |
| 			for k, v := range mf {
 | |
| 				if k == "" {
 | |
| 					continue
 | |
| 				}
 | |
| 				if ti.infoFieldOmitempty && isEmptyValue(reflect.ValueOf(v), e.h.TypeInfos, recur) {
 | |
| 					continue
 | |
| 				}
 | |
| 				mf2s = append(mf2s, stringIntf{k, v})
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		xlen = newlen + len(mf2s)
 | |
| 		if xlen == 0 {
 | |
| 			e.e.WriteMapEmpty()
 | |
| 			goto END
 | |
| 		}
 | |
| 
 | |
| 		e.mapStart(xlen)
 | |
| 
 | |
| 		// When there are missing fields, and Canonical flag is set,
 | |
| 		// we cannot have the missing fields and struct fields sorted independently.
 | |
| 		// We have to capture them together and sort as a unit.
 | |
| 
 | |
| 		if len(mf2s) != 0 && e.h.Canonical {
 | |
| 			mf2w := make([]encStructFieldObj, newlen+len(mf2s))
 | |
| 			for j = 0; j < newlen; j++ {
 | |
| 				kv = fkvs[j]
 | |
| 				mf2w[j] = encStructFieldObj{kv.v.encName, kv.r, nil, true,
 | |
| 					!kv.v.encNameEscape4Json, kv.v.encBuiltin}
 | |
| 			}
 | |
| 			for _, v := range mf2s {
 | |
| 				mf2w[j] = encStructFieldObj{v.v, reflect.Value{}, v.i, false, false, false}
 | |
| 				j++
 | |
| 			}
 | |
| 			sort.Sort((encStructFieldObjSlice)(mf2w))
 | |
| 			for j, sf = range mf2w {
 | |
| 				e.c = containerMapKey
 | |
| 				e.e.WriteMapElemKey(j == 0)
 | |
| 				if ti.keyType == valueTypeString && sf.noEsc4json {
 | |
| 					e.e.EncodeStringNoEscape4Json(sf.key)
 | |
| 				} else {
 | |
| 					e.kStructFieldKey(ti.keyType, sf.key)
 | |
| 				}
 | |
| 				e.mapElemValue()
 | |
| 				if sf.isRv {
 | |
| 					if sf.builtin {
 | |
| 						e.encodeIB(rv2i(baseRVRV(sf.rv)))
 | |
| 					} else {
 | |
| 						e.encodeValue(sf.rv, nil)
 | |
| 					}
 | |
| 				} else {
 | |
| 					if !e.encodeBuiltin(sf.intf) {
 | |
| 						e.encodeR(reflect.ValueOf(sf.intf))
 | |
| 					}
 | |
| 					//e.encodeI(sf.intf) // MARKER inlined
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			keytyp := ti.keyType
 | |
| 			for j = 0; j < newlen; j++ {
 | |
| 				kv = fkvs[j]
 | |
| 				e.c = containerMapKey
 | |
| 				e.e.WriteMapElemKey(j == 0)
 | |
| 				if ti.keyType == valueTypeString && !kv.v.encNameEscape4Json {
 | |
| 					e.e.EncodeStringNoEscape4Json(kv.v.encName)
 | |
| 				} else {
 | |
| 					e.kStructFieldKey(keytyp, kv.v.encName)
 | |
| 				}
 | |
| 				e.mapElemValue()
 | |
| 				if kv.v.encBuiltin {
 | |
| 					e.encodeIB(rv2i(baseRVRV(kv.r)))
 | |
| 				} else {
 | |
| 					e.encodeValue(kv.r, nil)
 | |
| 				}
 | |
| 			}
 | |
| 			for _, v := range mf2s {
 | |
| 				e.c = containerMapKey
 | |
| 				e.e.WriteMapElemKey(j == 0)
 | |
| 				e.kStructFieldKey(keytyp, v.v)
 | |
| 				e.mapElemValue()
 | |
| 				if !e.encodeBuiltin(v.i) {
 | |
| 					e.encodeR(reflect.ValueOf(v.i))
 | |
| 				}
 | |
| 				// e.encodeI(v.i) // MARKER inlined
 | |
| 				j++
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		e.c = 0
 | |
| 		e.e.WriteMapEnd()
 | |
| 	} else {
 | |
| 		newlen = len(tisfi)
 | |
| 		for i, si := range tisfi { // use unsorted array (to match sequence in struct)
 | |
| 			// kv.r = si.path.field(rv, false, si.encBuiltin || !chkCirRef)
 | |
| 			// kv.r = si.path.field(rv, false, !si.omitEmpty || si.encBuiltin || !chkCirRef)
 | |
| 			if si.omitEmpty {
 | |
| 				// use the zero value.
 | |
| 				// if a reference or struct, set to nil (so you do not output too much)
 | |
| 				kv.r = si.fieldNoAlloc(rv, false) // test actual field val
 | |
| 				if isEmptyContainerValue(kv.r, e.h.TypeInfos, recur) {
 | |
| 					kv.r = reflect.Value{} //encode as nil
 | |
| 				}
 | |
| 			} else {
 | |
| 				kv.r = si.fieldNoAlloc(rv, si.encBuiltin || !chkCirRef)
 | |
| 			}
 | |
| 			kv.v = si
 | |
| 			fkvs[i] = kv
 | |
| 		}
 | |
| 
 | |
| 		if newlen == 0 {
 | |
| 			e.e.WriteArrayEmpty()
 | |
| 			goto END
 | |
| 		}
 | |
| 
 | |
| 		// encode it all
 | |
| 		e.arrayStart(newlen)
 | |
| 		for j = 0; j < newlen; j++ {
 | |
| 			e.c = containerArrayElem
 | |
| 			e.e.WriteArrayElem(j == 0)
 | |
| 			kv = fkvs[j]
 | |
| 			if !kv.r.IsValid() {
 | |
| 				e.e.EncodeNil()
 | |
| 			} else if kv.v.encBuiltin {
 | |
| 				e.encodeIB(rv2i(baseRVRV(kv.r)))
 | |
| 			} else {
 | |
| 				e.encodeValue(kv.r, nil)
 | |
| 			}
 | |
| 		}
 | |
| 		e.c = 0
 | |
| 		e.e.WriteArrayEnd()
 | |
| 	}
 | |
| 
 | |
| END:
 | |
| 	// do not use defer. Instead, use explicit pool return at end of function.
 | |
| 	// defer has a cost we are trying to avoid.
 | |
| 	// If there is a panic and these slices are not returned, it is ok.
 | |
| 	e.slist.put(fkvs)
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kMap(f *encFnInfo, rv reflect.Value) {
 | |
| 	_ = e.e // early asserts e, e.e are not nil once
 | |
| 	l := rvLenMap(rv)
 | |
| 	if l == 0 {
 | |
| 		e.e.WriteMapEmpty()
 | |
| 		return
 | |
| 	}
 | |
| 	e.mapStart(l)
 | |
| 
 | |
| 	// determine the underlying key and val encFn's for the map.
 | |
| 	// This eliminates some work which is done for each loop iteration i.e.
 | |
| 	// rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
 | |
| 	//
 | |
| 	// However, if kind is reflect.Interface, do not pre-determine the
 | |
| 	// encoding type, because preEncodeValue may break it down to
 | |
| 	// a concrete type and kInterface will bomb.
 | |
| 
 | |
| 	var keyFn, valFn *encFn[T]
 | |
| 
 | |
| 	ktypeKind := reflect.Kind(f.ti.keykind)
 | |
| 	vtypeKind := reflect.Kind(f.ti.elemkind)
 | |
| 
 | |
| 	rtval := f.ti.elem
 | |
| 	rtvalkind := vtypeKind
 | |
| 	for rtvalkind == reflect.Ptr {
 | |
| 		rtval = rtval.Elem()
 | |
| 		rtvalkind = rtval.Kind()
 | |
| 	}
 | |
| 	if rtvalkind != reflect.Interface {
 | |
| 		valFn = e.fn(rtval)
 | |
| 	}
 | |
| 
 | |
| 	var rvv = mapAddrLoopvarRV(f.ti.elem, vtypeKind)
 | |
| 
 | |
| 	rtkey := f.ti.key
 | |
| 	var keyTypeIsString = stringTypId == rt2id(rtkey) // rtkeyid
 | |
| 	if keyTypeIsString {
 | |
| 		keyFn = e.fn(rtkey)
 | |
| 	} else {
 | |
| 		for rtkey.Kind() == reflect.Ptr {
 | |
| 			rtkey = rtkey.Elem()
 | |
| 		}
 | |
| 		if rtkey.Kind() != reflect.Interface {
 | |
| 			keyFn = e.fn(rtkey)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if e.h.Canonical {
 | |
| 		e.kMapCanonical(f.ti, rv, rvv, keyFn, valFn)
 | |
| 		e.c = 0
 | |
| 		e.e.WriteMapEnd()
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	var rvk = mapAddrLoopvarRV(f.ti.key, ktypeKind)
 | |
| 
 | |
| 	var it mapIter
 | |
| 	mapRange(&it, rv, rvk, rvv, true)
 | |
| 
 | |
| 	kbuiltin := f.ti.tikey.flagEncBuiltin
 | |
| 	vbuiltin := f.ti.tielem.flagEncBuiltin
 | |
| 	for j := 0; it.Next(); j++ {
 | |
| 		rv = it.Key()
 | |
| 		e.c = containerMapKey
 | |
| 		e.e.WriteMapElemKey(j == 0)
 | |
| 		if keyTypeIsString {
 | |
| 			e.e.EncodeString(rvGetString(rv))
 | |
| 		} else if kbuiltin {
 | |
| 			e.encodeIB(rv2i(baseRVRV(rv)))
 | |
| 		} else {
 | |
| 			e.encodeValue(rv, keyFn)
 | |
| 		}
 | |
| 		e.mapElemValue()
 | |
| 		rv = it.Value()
 | |
| 		if vbuiltin {
 | |
| 			e.encodeIB(rv2i(baseRVRV(rv)))
 | |
| 		} else {
 | |
| 			e.encodeValue(it.Value(), valFn)
 | |
| 		}
 | |
| 	}
 | |
| 	it.Done()
 | |
| 
 | |
| 	e.c = 0
 | |
| 	e.e.WriteMapEnd()
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) kMapCanonical(ti *typeInfo, rv, rvv reflect.Value, keyFn, valFn *encFn[T]) {
 | |
| 	_ = e.e // early asserts e, e.e are not nil once
 | |
| 	// The base kind of the type of the map key is sufficient for ordering.
 | |
| 	// We only do out of band if that kind is not ordered (number or string), bool or time.Time.
 | |
| 	// If the key is a predeclared type, directly call methods on encDriver e.g. EncodeString
 | |
| 	// but if not, call encodeValue, in case it has an extension registered or otherwise.
 | |
| 	rtkey := ti.key
 | |
| 	rtkeydecl := rtkey.PkgPath() == "" && rtkey.Name() != "" // key type is predeclared
 | |
| 
 | |
| 	mks := rv.MapKeys()
 | |
| 	rtkeyKind := rtkey.Kind()
 | |
| 	mparams := getMapReqParams(ti)
 | |
| 
 | |
| 	// kfast := mapKeyFastKindFor(rtkeyKind)
 | |
| 	// visindirect := mapStoresElemIndirect(uintptr(ti.elemsize))
 | |
| 	// visref := refBitset.isset(ti.elemkind)
 | |
| 
 | |
| 	switch rtkeyKind {
 | |
| 	case reflect.Bool:
 | |
| 		// though bool keys make no sense in a map, it *could* happen.
 | |
| 		// in that case, we MUST support it in reflection mode,
 | |
| 		// as that is the fallback for even codecgen and others.
 | |
| 
 | |
| 		// sort the keys so that false comes before true
 | |
| 		// ie if 2 keys in order (true, false), then swap them
 | |
| 		if len(mks) == 2 && mks[0].Bool() {
 | |
| 			mks[0], mks[1] = mks[1], mks[0]
 | |
| 		}
 | |
| 		for i := range mks {
 | |
| 			e.c = containerMapKey
 | |
| 			e.e.WriteMapElemKey(i == 0)
 | |
| 			if rtkeydecl {
 | |
| 				e.e.EncodeBool(mks[i].Bool())
 | |
| 			} else {
 | |
| 				e.encodeValueNonNil(mks[i], keyFn)
 | |
| 			}
 | |
| 			e.mapElemValue()
 | |
| 			e.encodeValue(mapGet(rv, mks[i], rvv, mparams), valFn)
 | |
| 		}
 | |
| 	case reflect.String:
 | |
| 		mksv := make([]orderedRv[string], len(mks))
 | |
| 		for i, k := range mks {
 | |
| 			v := &mksv[i]
 | |
| 			v.r = k
 | |
| 			v.v = rvGetString(k)
 | |
| 		}
 | |
| 		slices.SortFunc(mksv, cmpOrderedRv)
 | |
| 		for i := range mksv {
 | |
| 			e.c = containerMapKey
 | |
| 			e.e.WriteMapElemKey(i == 0)
 | |
| 			if rtkeydecl {
 | |
| 				e.e.EncodeString(mksv[i].v)
 | |
| 			} else {
 | |
| 				e.encodeValueNonNil(mksv[i].r, keyFn)
 | |
| 			}
 | |
| 			e.mapElemValue()
 | |
| 			e.encodeValue(mapGet(rv, mksv[i].r, rvv, mparams), valFn)
 | |
| 		}
 | |
| 	case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
 | |
| 		mksv := make([]orderedRv[uint64], len(mks))
 | |
| 		for i, k := range mks {
 | |
| 			v := &mksv[i]
 | |
| 			v.r = k
 | |
| 			v.v = k.Uint()
 | |
| 		}
 | |
| 		slices.SortFunc(mksv, cmpOrderedRv)
 | |
| 		for i := range mksv {
 | |
| 			e.c = containerMapKey
 | |
| 			e.e.WriteMapElemKey(i == 0)
 | |
| 			if rtkeydecl {
 | |
| 				e.e.EncodeUint(mksv[i].v)
 | |
| 			} else {
 | |
| 				e.encodeValueNonNil(mksv[i].r, keyFn)
 | |
| 			}
 | |
| 			e.mapElemValue()
 | |
| 			e.encodeValue(mapGet(rv, mksv[i].r, rvv, mparams), valFn)
 | |
| 		}
 | |
| 	case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
 | |
| 		mksv := make([]orderedRv[int64], len(mks))
 | |
| 		for i, k := range mks {
 | |
| 			v := &mksv[i]
 | |
| 			v.r = k
 | |
| 			v.v = k.Int()
 | |
| 		}
 | |
| 		slices.SortFunc(mksv, cmpOrderedRv)
 | |
| 		for i := range mksv {
 | |
| 			e.c = containerMapKey
 | |
| 			e.e.WriteMapElemKey(i == 0)
 | |
| 			if rtkeydecl {
 | |
| 				e.e.EncodeInt(mksv[i].v)
 | |
| 			} else {
 | |
| 				e.encodeValueNonNil(mksv[i].r, keyFn)
 | |
| 			}
 | |
| 			e.mapElemValue()
 | |
| 			e.encodeValue(mapGet(rv, mksv[i].r, rvv, mparams), valFn)
 | |
| 		}
 | |
| 	case reflect.Float32:
 | |
| 		mksv := make([]orderedRv[float64], len(mks))
 | |
| 		for i, k := range mks {
 | |
| 			v := &mksv[i]
 | |
| 			v.r = k
 | |
| 			v.v = k.Float()
 | |
| 		}
 | |
| 		slices.SortFunc(mksv, cmpOrderedRv)
 | |
| 		for i := range mksv {
 | |
| 			e.c = containerMapKey
 | |
| 			e.e.WriteMapElemKey(i == 0)
 | |
| 			if rtkeydecl {
 | |
| 				e.e.EncodeFloat32(float32(mksv[i].v))
 | |
| 			} else {
 | |
| 				e.encodeValueNonNil(mksv[i].r, keyFn)
 | |
| 			}
 | |
| 			e.mapElemValue()
 | |
| 			e.encodeValue(mapGet(rv, mksv[i].r, rvv, mparams), valFn)
 | |
| 		}
 | |
| 	case reflect.Float64:
 | |
| 		mksv := make([]orderedRv[float64], len(mks))
 | |
| 		for i, k := range mks {
 | |
| 			v := &mksv[i]
 | |
| 			v.r = k
 | |
| 			v.v = k.Float()
 | |
| 		}
 | |
| 		slices.SortFunc(mksv, cmpOrderedRv)
 | |
| 		for i := range mksv {
 | |
| 			e.c = containerMapKey
 | |
| 			e.e.WriteMapElemKey(i == 0)
 | |
| 			if rtkeydecl {
 | |
| 				e.e.EncodeFloat64(mksv[i].v)
 | |
| 			} else {
 | |
| 				e.encodeValueNonNil(mksv[i].r, keyFn)
 | |
| 			}
 | |
| 			e.mapElemValue()
 | |
| 			e.encodeValue(mapGet(rv, mksv[i].r, rvv, mparams), valFn)
 | |
| 		}
 | |
| 	default:
 | |
| 		if rtkey == timeTyp {
 | |
| 			mksv := make([]timeRv, len(mks))
 | |
| 			for i, k := range mks {
 | |
| 				v := &mksv[i]
 | |
| 				v.r = k
 | |
| 				v.v = rv2i(k).(time.Time)
 | |
| 			}
 | |
| 			slices.SortFunc(mksv, cmpTimeRv)
 | |
| 			for i := range mksv {
 | |
| 				e.c = containerMapKey
 | |
| 				e.e.WriteMapElemKey(i == 0)
 | |
| 				e.e.EncodeTime(mksv[i].v)
 | |
| 				e.mapElemValue()
 | |
| 				e.encodeValue(mapGet(rv, mksv[i].r, rvv, mparams), valFn)
 | |
| 			}
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		// out-of-band
 | |
| 		// first encode each key to a []byte first, then sort them, then record
 | |
| 		bs0 := e.blist.get(len(mks) * 16)
 | |
| 		mksv := bs0
 | |
| 		mksbv := make([]bytesRv, len(mks))
 | |
| 
 | |
| 		sideEncode(e.hh, &e.h.sideEncPool, func(se encoderI) {
 | |
| 			se.ResetBytes(&mksv)
 | |
| 			for i, k := range mks {
 | |
| 				v := &mksbv[i]
 | |
| 				l := len(mksv)
 | |
| 				se.setContainerState(containerMapKey)
 | |
| 				se.encodeR(baseRVRV(k))
 | |
| 				se.atEndOfEncode()
 | |
| 				se.writerEnd()
 | |
| 				v.r = k
 | |
| 				v.v = mksv[l:]
 | |
| 			}
 | |
| 		})
 | |
| 
 | |
| 		slices.SortFunc(mksbv, cmpBytesRv)
 | |
| 		for j := range mksbv {
 | |
| 			e.c = containerMapKey
 | |
| 			e.e.WriteMapElemKey(j == 0)
 | |
| 			e.e.writeBytesAsis(mksbv[j].v)
 | |
| 			e.mapElemValue()
 | |
| 			e.encodeValue(mapGet(rv, mksbv[j].r, rvv, mparams), valFn)
 | |
| 		}
 | |
| 		e.blist.put(mksv)
 | |
| 		if !byteSliceSameData(bs0, mksv) {
 | |
| 			e.blist.put(bs0)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) init(h Handle) {
 | |
| 	initHandle(h)
 | |
| 	callMake(&e.e)
 | |
| 	e.hh = h
 | |
| 	e.h = h.getBasicHandle()
 | |
| 	// e.be = e.hh.isBinary()
 | |
| 	e.err = errEncoderNotInitialized
 | |
| 
 | |
| 	// e.fp = fastpathEList[T]()
 | |
| 	e.fp = e.e.init(h, &e.encoderBase, e).(*fastpathEs[T])
 | |
| 
 | |
| 	if e.bytes {
 | |
| 		e.rtidFn = &e.h.rtidFnsEncBytes
 | |
| 		e.rtidFnNoExt = &e.h.rtidFnsEncNoExtBytes
 | |
| 	} else {
 | |
| 		e.rtidFn = &e.h.rtidFnsEncIO
 | |
| 		e.rtidFnNoExt = &e.h.rtidFnsEncNoExtIO
 | |
| 	}
 | |
| 
 | |
| 	e.reset()
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) reset() {
 | |
| 	e.e.reset()
 | |
| 	if e.ci != nil {
 | |
| 		e.ci = e.ci[:0]
 | |
| 	}
 | |
| 	e.c = 0
 | |
| 	e.calls = 0
 | |
| 	e.seq = 0
 | |
| 	e.err = nil
 | |
| }
 | |
| 
 | |
| // Encode writes an object into a stream.
 | |
| //
 | |
| // Encoding can be configured via the struct tag for the fields.
 | |
| // The key (in the struct tags) that we look at is configurable.
 | |
| //
 | |
| // By default, we look up the "codec" key in the struct field's tags,
 | |
| // and fall bak to the "json" key if "codec" is absent.
 | |
| // That key in struct field's tag value is the key name,
 | |
| // followed by an optional comma and options.
 | |
| //
 | |
| // To set an option on all fields (e.g. omitempty on all fields), you
 | |
| // can create a field called _struct, and set flags on it. The options
 | |
| // which can be set on _struct are:
 | |
| //   - omitempty: so all fields are omitted if empty
 | |
| //   - toarray: so struct is encoded as an array
 | |
| //   - int: so struct key names are encoded as signed integers (instead of strings)
 | |
| //   - uint: so struct key names are encoded as unsigned integers (instead of strings)
 | |
| //   - float: so struct key names are encoded as floats (instead of strings)
 | |
| //
 | |
| // More details on these below.
 | |
| //
 | |
| // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
 | |
| //   - the field's tag is "-", OR
 | |
| //   - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
 | |
| //
 | |
| // When encoding as a map, the first string in the tag (before the comma)
 | |
| // is the map key string to use when encoding.
 | |
| // ...
 | |
| // This key is typically encoded as a string.
 | |
| // However, there are instances where the encoded stream has mapping keys encoded as numbers.
 | |
| // For example, some cbor streams have keys as integer codes in the stream, but they should map
 | |
| // to fields in a structured object. Consequently, a struct is the natural representation in code.
 | |
| // For these, configure the struct to encode/decode the keys as numbers (instead of string).
 | |
| // This is done with the int,uint or float option on the _struct field (see above).
 | |
| //
 | |
| // However, struct values may encode as arrays. This happens when:
 | |
| //   - StructToArray Encode option is set, OR
 | |
| //   - the tag on the _struct field sets the "toarray" option
 | |
| //
 | |
| // Note that omitempty is ignored when encoding struct values as arrays,
 | |
| // as an entry must be encoded for each field, to maintain its position.
 | |
| //
 | |
| // Values with types that implement MapBySlice are encoded as stream maps.
 | |
| //
 | |
| // The empty values (for omitempty option) are false, 0, any nil pointer
 | |
| // or interface value, and any array, slice, map, or string of length zero.
 | |
| //
 | |
| // Anonymous fields are encoded inline except:
 | |
| //   - the struct tag specifies a replacement name (first value)
 | |
| //   - the field is of an interface type
 | |
| //
 | |
| // Examples:
 | |
| //
 | |
| //	// NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
 | |
| //	type MyStruct struct {
 | |
| //	    _struct bool    `codec:",omitempty"`   //set omitempty for every field
 | |
| //	    Field1 string   `codec:"-"`            //skip this field
 | |
| //	    Field2 int      `codec:"myName"`       //Use key "myName" in encode stream
 | |
| //	    Field3 int32    `codec:",omitempty"`   //use key "Field3". Omit if empty.
 | |
| //	    Field4 bool     `codec:"f4,omitempty"` //use key "f4". Omit if empty.
 | |
| //	    io.Reader                              //use key "Reader".
 | |
| //	    MyStruct        `codec:"my1"           //use key "my1".
 | |
| //	    MyStruct                               //inline it
 | |
| //	    ...
 | |
| //	}
 | |
| //
 | |
| //	type MyStruct struct {
 | |
| //	    _struct bool    `codec:",toarray"`     //encode struct as an array
 | |
| //	}
 | |
| //
 | |
| //	type MyStruct struct {
 | |
| //	    _struct bool    `codec:",uint"`        //encode struct with "unsigned integer" keys
 | |
| //	    Field1 string   `codec:"1"`            //encode Field1 key using: EncodeInt(1)
 | |
| //	    Field2 string   `codec:"2"`            //encode Field2 key using: EncodeInt(2)
 | |
| //	}
 | |
| //
 | |
| // The mode of encoding is based on the type of the value. When a value is seen:
 | |
| //   - If a Selfer, call its CodecEncodeSelf method
 | |
| //   - If an extension is registered for it, call that extension function
 | |
| //   - If implements encoding.(Binary|Text|JSON)Marshaler, call Marshal(Binary|Text|JSON) method
 | |
| //   - Else encode it based on its reflect.Kind
 | |
| //
 | |
| // Note that struct field names and keys in map[string]XXX will be treated as symbols.
 | |
| // Some formats support symbols (e.g. binc) and will properly encode the string
 | |
| // only once in the stream, and use a tag to refer to it thereafter.
 | |
| //
 | |
| // Note that an error from an Encode call will make the Encoder unusable moving forward.
 | |
| // This is because the state of the Encoder, it's output stream, etc are no longer stable.
 | |
| // Any subsequent calls to Encode will trigger the same error.
 | |
| func (e *encoder[T]) Encode(v interface{}) (err error) {
 | |
| 	// tried to use closure, as runtime optimizes defer with no params.
 | |
| 	// This seemed to be causing weird issues (like circular reference found, unexpected panic, etc).
 | |
| 	// Also, see https://github.com/golang/go/issues/14939#issuecomment-417836139
 | |
| 	defer panicValToErr(e, callRecoverSentinel, &e.err, &err, debugging)
 | |
| 	e.mustEncode(v)
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // MustEncode is like Encode, but panics if unable to Encode.
 | |
| //
 | |
| // Note: This provides insight to the code location that triggered the error.
 | |
| //
 | |
| // Note that an error from an Encode call will make the Encoder unusable moving forward.
 | |
| // This is because the state of the Encoder, it's output stream, etc are no longer stable.
 | |
| // Any subsequent calls to Encode will trigger the same error.
 | |
| func (e *encoder[T]) MustEncode(v interface{}) {
 | |
| 	defer panicValToErr(e, callRecoverSentinel, &e.err, nil, true)
 | |
| 	e.mustEncode(v)
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) mustEncode(v interface{}) {
 | |
| 	halt.onerror(e.err)
 | |
| 	if e.hh == nil {
 | |
| 		halt.onerror(errNoFormatHandle)
 | |
| 	}
 | |
| 
 | |
| 	e.calls++
 | |
| 	if !e.encodeBuiltin(v) {
 | |
| 		e.encodeR(reflect.ValueOf(v))
 | |
| 	}
 | |
| 	// e.encodeI(v) // MARKER inlined
 | |
| 	e.calls--
 | |
| 	if e.calls == 0 {
 | |
| 		e.e.atEndOfEncode()
 | |
| 		e.e.writerEnd()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) encodeI(iv interface{}) {
 | |
| 	if !e.encodeBuiltin(iv) {
 | |
| 		e.encodeR(reflect.ValueOf(iv))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) encodeIB(iv interface{}) {
 | |
| 	if !e.encodeBuiltin(iv) {
 | |
| 		// panic("invalid type passed to encodeBuiltin")
 | |
| 		// halt.errorf("invalid type passed to encodeBuiltin: %T", iv)
 | |
| 		// MARKER: calling halt.errorf pulls in fmt.Sprintf/Errorf which makes this non-inlineable
 | |
| 		halt.errorStr("[should not happen] invalid type passed to encodeBuiltin")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) encodeR(base reflect.Value) {
 | |
| 	e.encodeValue(base, nil)
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) encodeBuiltin(iv interface{}) (ok bool) {
 | |
| 	ok = true
 | |
| 	switch v := iv.(type) {
 | |
| 	case nil:
 | |
| 		e.e.EncodeNil()
 | |
| 	// case Selfer:
 | |
| 	case Raw:
 | |
| 		e.rawBytes(v)
 | |
| 	case string:
 | |
| 		e.e.EncodeString(v)
 | |
| 	case bool:
 | |
| 		e.e.EncodeBool(v)
 | |
| 	case int:
 | |
| 		e.e.EncodeInt(int64(v))
 | |
| 	case int8:
 | |
| 		e.e.EncodeInt(int64(v))
 | |
| 	case int16:
 | |
| 		e.e.EncodeInt(int64(v))
 | |
| 	case int32:
 | |
| 		e.e.EncodeInt(int64(v))
 | |
| 	case int64:
 | |
| 		e.e.EncodeInt(v)
 | |
| 	case uint:
 | |
| 		e.e.EncodeUint(uint64(v))
 | |
| 	case uint8:
 | |
| 		e.e.EncodeUint(uint64(v))
 | |
| 	case uint16:
 | |
| 		e.e.EncodeUint(uint64(v))
 | |
| 	case uint32:
 | |
| 		e.e.EncodeUint(uint64(v))
 | |
| 	case uint64:
 | |
| 		e.e.EncodeUint(v)
 | |
| 	case uintptr:
 | |
| 		e.e.EncodeUint(uint64(v))
 | |
| 	case float32:
 | |
| 		e.e.EncodeFloat32(v)
 | |
| 	case float64:
 | |
| 		e.e.EncodeFloat64(v)
 | |
| 	case complex64:
 | |
| 		e.encodeComplex64(v)
 | |
| 	case complex128:
 | |
| 		e.encodeComplex128(v)
 | |
| 	case time.Time:
 | |
| 		e.e.EncodeTime(v)
 | |
| 	case []byte:
 | |
| 		e.e.EncodeBytes(v) // e.e.EncodeStringBytesRaw(v)
 | |
| 	default:
 | |
| 		// we can't check non-predefined types, as they might be a Selfer or extension.
 | |
| 		ok = !skipFastpathTypeSwitchInDirectCall && e.dh.fastpathEncodeTypeSwitch(iv, e)
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // encodeValue will encode a value.
 | |
| //
 | |
| // Note that encodeValue will handle nil in the stream early, so that the
 | |
| // subsequent calls i.e. kXXX methods, etc do not have to handle it themselves.
 | |
| func (e *encoder[T]) encodeValue(rv reflect.Value, fn *encFn[T]) {
 | |
| 	// MARKER: We check if value is nil here, so that the kXXX method do not have to.
 | |
| 	// if a valid fn is passed, it MUST BE for the dereferenced type of rv
 | |
| 
 | |
| 	var ciPushes int
 | |
| 	// if e.h.CheckCircularRef {
 | |
| 	// 	ciPushes = e.ci.pushRV(rv)
 | |
| 	// }
 | |
| 
 | |
| 	var rvp reflect.Value
 | |
| 	var rvpValid bool
 | |
| 
 | |
| RV:
 | |
| 	switch rv.Kind() {
 | |
| 	case reflect.Ptr:
 | |
| 		if rvIsNil(rv) {
 | |
| 			e.e.EncodeNil()
 | |
| 			goto END
 | |
| 		}
 | |
| 		rvpValid = true
 | |
| 		rvp = rv
 | |
| 		rv = rv.Elem()
 | |
| 		// fn = nil // underlying type still same - no change
 | |
| 		if e.h.CheckCircularRef && e.ci.canPushElemKind(rv.Kind()) {
 | |
| 			e.ci.push(rv2i(rvp))
 | |
| 			ciPushes++
 | |
| 		}
 | |
| 		goto RV
 | |
| 	case reflect.Interface:
 | |
| 		if rvIsNil(rv) {
 | |
| 			e.e.EncodeNil()
 | |
| 			goto END
 | |
| 		}
 | |
| 		rvpValid = false
 | |
| 		rvp = reflect.Value{}
 | |
| 		rv = rv.Elem()
 | |
| 		fn = nil // underlying type may change, so prompt a reset
 | |
| 		goto RV
 | |
| 	case reflect.Map:
 | |
| 		if rvIsNil(rv) {
 | |
| 			if e.h.NilCollectionToZeroLength {
 | |
| 				e.e.WriteMapEmpty()
 | |
| 			} else {
 | |
| 				e.e.EncodeNil()
 | |
| 			}
 | |
| 			goto END
 | |
| 		}
 | |
| 	case reflect.Slice, reflect.Chan:
 | |
| 		if rvIsNil(rv) {
 | |
| 			if e.h.NilCollectionToZeroLength {
 | |
| 				e.e.WriteArrayEmpty()
 | |
| 			} else {
 | |
| 				e.e.EncodeNil()
 | |
| 			}
 | |
| 			goto END
 | |
| 		}
 | |
| 	case reflect.Invalid, reflect.Func:
 | |
| 		e.e.EncodeNil()
 | |
| 		goto END
 | |
| 	}
 | |
| 
 | |
| 	if fn == nil {
 | |
| 		fn = e.fn(rv.Type())
 | |
| 	}
 | |
| 
 | |
| 	if !fn.i.addrE { // typically, addrE = false, so check it first
 | |
| 		// keep rv same
 | |
| 	} else if rvpValid {
 | |
| 		rv = rvp
 | |
| 	} else if rv.CanAddr() {
 | |
| 		rv = rvAddr(rv, fn.i.ti.ptr)
 | |
| 	} else {
 | |
| 		rv = e.addrRV(rv, fn.i.ti.rt, fn.i.ti.ptr)
 | |
| 	}
 | |
| 	fn.fe(e, &fn.i, rv)
 | |
| 
 | |
| END:
 | |
| 	if ciPushes > 0 {
 | |
| 		e.ci.pop(ciPushes)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) encodeValueNonNil(rv reflect.Value, fn *encFn[T]) {
 | |
| 	// only call this if a primitive (number, bool, string) OR
 | |
| 	// a non-nil collection (map/slice/chan).
 | |
| 	//
 | |
| 	// Expects fn to be non-nil
 | |
| 	if fn.i.addrE { // typically, addrE = false, so check it first
 | |
| 		if rv.CanAddr() {
 | |
| 			rv = rvAddr(rv, fn.i.ti.ptr)
 | |
| 		} else {
 | |
| 			rv = e.addrRV(rv, fn.i.ti.rt, fn.i.ti.ptr)
 | |
| 		}
 | |
| 	}
 | |
| 	fn.fe(e, &fn.i, rv)
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) encodeAs(v interface{}, t reflect.Type, ext bool) {
 | |
| 	if ext {
 | |
| 		e.encodeValue(baseRV(v), e.fn(t))
 | |
| 	} else {
 | |
| 		e.encodeValue(baseRV(v), e.fnNoExt(t))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) marshalUtf8(bs []byte, fnerr error) {
 | |
| 	halt.onerror(fnerr)
 | |
| 	if bs == nil {
 | |
| 		e.e.EncodeNil()
 | |
| 	} else {
 | |
| 		e.e.EncodeString(stringView(bs))
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) marshalAsis(bs []byte, fnerr error) {
 | |
| 	halt.onerror(fnerr)
 | |
| 	if bs == nil {
 | |
| 		e.e.EncodeNil()
 | |
| 	} else {
 | |
| 		e.e.writeBytesAsis(bs) // e.asis(bs)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) marshalRaw(bs []byte, fnerr error) {
 | |
| 	halt.onerror(fnerr)
 | |
| 	e.e.EncodeBytes(bs)
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) rawBytes(vv Raw) {
 | |
| 	v := []byte(vv)
 | |
| 	if !e.h.Raw {
 | |
| 		halt.errorBytes("Raw values cannot be encoded: ", v)
 | |
| 	}
 | |
| 	e.e.writeBytesAsis(v)
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) fn(t reflect.Type) *encFn[T] {
 | |
| 	return e.dh.encFnViaBH(t, e.rtidFn, e.h, e.fp, false)
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) fnNoExt(t reflect.Type) *encFn[T] {
 | |
| 	return e.dh.encFnViaBH(t, e.rtidFnNoExt, e.h, e.fp, true)
 | |
| }
 | |
| 
 | |
| // ---- container tracker methods
 | |
| // Note: We update the .c after calling the callback.
 | |
| //
 | |
| // Callbacks ie Write(Map|Array)XXX should not use the containerState.
 | |
| // It is there for post-callback use.
 | |
| // Instead, callbacks have a parameter to tell if first time or not.
 | |
| //
 | |
| // Some code is commented out below, as they are manually inlined.
 | |
| // Commented code is retained here for convernience.
 | |
| 
 | |
| func (e *encoder[T]) mapStart(length int) {
 | |
| 	e.e.WriteMapStart(length)
 | |
| 	e.c = containerMapStart
 | |
| }
 | |
| 
 | |
| // func (e *encoder[T]) mapElemKey(firstTime bool) {
 | |
| // 	e.e.WriteMapElemKey(firstTime)
 | |
| // 	e.c = containerMapKey
 | |
| // }
 | |
| 
 | |
| func (e *encoder[T]) mapElemValue() {
 | |
| 	e.e.WriteMapElemValue()
 | |
| 	e.c = containerMapValue
 | |
| }
 | |
| 
 | |
| // func (e *encoder[T]) mapEnd() {
 | |
| // 	e.e.WriteMapEnd()
 | |
| // 	e.c = 0
 | |
| // }
 | |
| 
 | |
| func (e *encoder[T]) arrayStart(length int) {
 | |
| 	e.e.WriteArrayStart(length)
 | |
| 	e.c = containerArrayStart
 | |
| }
 | |
| 
 | |
| // func (e *encoder[T]) arrayElem(firstTime bool) {
 | |
| // 	e.e.WriteArrayElem(firstTime)
 | |
| // 	e.c = containerArrayElem
 | |
| // }
 | |
| 
 | |
| // func (e *encoder[T]) arrayEnd() {
 | |
| // 	e.e.WriteArrayEnd()
 | |
| // 	e.c = 0
 | |
| // }
 | |
| 
 | |
| // ----------
 | |
| 
 | |
| func (e *encoder[T]) writerEnd() {
 | |
| 	e.e.writerEnd()
 | |
| }
 | |
| 
 | |
| func (e *encoder[T]) atEndOfEncode() {
 | |
| 	e.e.atEndOfEncode()
 | |
| }
 | |
| 
 | |
| // Reset resets the Encoder with a new output stream.
 | |
| //
 | |
| // This accommodates using the state of the Encoder,
 | |
| // where it has "cached" information about sub-engines.
 | |
| func (e *encoder[T]) Reset(w io.Writer) {
 | |
| 	if e.bytes {
 | |
| 		halt.onerror(errEncNoResetBytesWithWriter)
 | |
| 	}
 | |
| 	e.reset()
 | |
| 	if w == nil {
 | |
| 		w = io.Discard
 | |
| 	}
 | |
| 	e.e.resetOutIO(w)
 | |
| }
 | |
| 
 | |
| // ResetBytes resets the Encoder with a new destination output []byte.
 | |
| func (e *encoder[T]) ResetBytes(out *[]byte) {
 | |
| 	if !e.bytes {
 | |
| 		halt.onerror(errEncNoResetWriterWithBytes)
 | |
| 	}
 | |
| 	e.resetBytes(out)
 | |
| }
 | |
| 
 | |
| // only call this iff you are sure it is a bytes encoder
 | |
| func (e *encoder[T]) resetBytes(out *[]byte) {
 | |
| 	e.reset()
 | |
| 	if out == nil {
 | |
| 		out = &bytesEncAppenderDefOut
 | |
| 	}
 | |
| 	e.e.resetOutBytes(out)
 | |
| }
 | |
| 
 | |
| // ----
 | |
| 
 | |
| func (helperEncDriver[T]) newEncoderBytes(out *[]byte, h Handle) *encoder[T] {
 | |
| 	var c1 encoder[T]
 | |
| 	c1.bytes = true
 | |
| 	c1.init(h)
 | |
| 	c1.ResetBytes(out)
 | |
| 	return &c1
 | |
| }
 | |
| 
 | |
| func (helperEncDriver[T]) newEncoderIO(out io.Writer, h Handle) *encoder[T] {
 | |
| 	var c1 encoder[T]
 | |
| 	c1.bytes = false
 | |
| 	c1.init(h)
 | |
| 	c1.Reset(out)
 | |
| 	return &c1
 | |
| }
 | |
| 
 | |
| func (helperEncDriver[T]) encFnloadFastpathUnderlying(ti *typeInfo, fp *fastpathEs[T]) (f *fastpathE[T], u reflect.Type) {
 | |
| 	rtid := rt2id(ti.fastpathUnderlying)
 | |
| 	idx, ok := fastpathAvIndex(rtid)
 | |
| 	if !ok {
 | |
| 		return
 | |
| 	}
 | |
| 	f = &fp[idx]
 | |
| 	if uint8(reflect.Array) == ti.kind {
 | |
| 		u = reflect.ArrayOf(ti.rt.Len(), ti.elem)
 | |
| 	} else {
 | |
| 		u = f.rt
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // ----
 | |
| 
 | |
| func (helperEncDriver[T]) encFindRtidFn(s []encRtidFn[T], rtid uintptr) (i uint, fn *encFn[T]) {
 | |
| 	// binary search. Adapted from sort/search.go. Use goto (not for loop) to allow inlining.
 | |
| 	var h uint // var h, i uint
 | |
| 	var j = uint(len(s))
 | |
| LOOP:
 | |
| 	if i < j {
 | |
| 		h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2
 | |
| 		if s[h].rtid < rtid {
 | |
| 			i = h + 1
 | |
| 		} else {
 | |
| 			j = h
 | |
| 		}
 | |
| 		goto LOOP
 | |
| 	}
 | |
| 	if i < uint(len(s)) && s[i].rtid == rtid {
 | |
| 		fn = s[i].fn
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (helperEncDriver[T]) encFromRtidFnSlice(fns *atomicRtidFnSlice) (s []encRtidFn[T]) {
 | |
| 	if v := fns.load(); v != nil {
 | |
| 		s = *(lowLevelToPtr[[]encRtidFn[T]](v))
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (dh helperEncDriver[T]) encFnViaBH(rt reflect.Type, fns *atomicRtidFnSlice,
 | |
| 	x *BasicHandle, fp *fastpathEs[T], checkExt bool) (fn *encFn[T]) {
 | |
| 	return dh.encFnVia(rt, fns, x.typeInfos(), &x.mu, x.extHandle, fp,
 | |
| 		checkExt, x.CheckCircularRef, x.timeBuiltin, x.binaryHandle, x.jsonHandle)
 | |
| }
 | |
| 
 | |
| func (dh helperEncDriver[T]) encFnVia(rt reflect.Type, fns *atomicRtidFnSlice,
 | |
| 	tinfos *TypeInfos, mu *sync.Mutex, exth extHandle, fp *fastpathEs[T],
 | |
| 	checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json bool) (fn *encFn[T]) {
 | |
| 	rtid := rt2id(rt)
 | |
| 	var sp []encRtidFn[T] = dh.encFromRtidFnSlice(fns)
 | |
| 	if sp != nil {
 | |
| 		_, fn = dh.encFindRtidFn(sp, rtid)
 | |
| 	}
 | |
| 	if fn == nil {
 | |
| 		fn = dh.encFnViaLoader(rt, rtid, fns, tinfos, mu, exth, fp, checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json)
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (dh helperEncDriver[T]) encFnViaLoader(rt reflect.Type, rtid uintptr, fns *atomicRtidFnSlice,
 | |
| 	tinfos *TypeInfos, mu *sync.Mutex, exth extHandle, fp *fastpathEs[T],
 | |
| 	checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json bool) (fn *encFn[T]) {
 | |
| 
 | |
| 	fn = dh.encFnLoad(rt, rtid, tinfos, exth, fp, checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json)
 | |
| 	var sp []encRtidFn[T]
 | |
| 	mu.Lock()
 | |
| 	sp = dh.encFromRtidFnSlice(fns)
 | |
| 	// since this is an atomic load/store, we MUST use a different array each time,
 | |
| 	// else we have a data race when a store is happening simultaneously with a encFindRtidFn call.
 | |
| 	if sp == nil {
 | |
| 		sp = []encRtidFn[T]{{rtid, fn}}
 | |
| 		fns.store(ptrToLowLevel(&sp))
 | |
| 	} else {
 | |
| 		idx, fn2 := dh.encFindRtidFn(sp, rtid)
 | |
| 		if fn2 == nil {
 | |
| 			sp2 := make([]encRtidFn[T], len(sp)+1)
 | |
| 			copy(sp2[idx+1:], sp[idx:])
 | |
| 			copy(sp2, sp[:idx])
 | |
| 			sp2[idx] = encRtidFn[T]{rtid, fn}
 | |
| 			fns.store(ptrToLowLevel(&sp2))
 | |
| 		}
 | |
| 	}
 | |
| 	mu.Unlock()
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (dh helperEncDriver[T]) encFnLoad(rt reflect.Type, rtid uintptr, tinfos *TypeInfos,
 | |
| 	exth extHandle, fp *fastpathEs[T],
 | |
| 	checkExt, checkCircularRef, timeBuiltin, binaryEncoding, json bool) (fn *encFn[T]) {
 | |
| 	fn = new(encFn[T])
 | |
| 	fi := &(fn.i)
 | |
| 	ti := tinfos.get(rtid, rt)
 | |
| 	fi.ti = ti
 | |
| 	rk := reflect.Kind(ti.kind)
 | |
| 
 | |
| 	// anything can be an extension except the built-in ones: time, raw and rawext.
 | |
| 	// ensure we check for these types, then if extension, before checking if
 | |
| 	// it implementes one of the pre-declared interfaces.
 | |
| 
 | |
| 	// fi.addrEf = true
 | |
| 
 | |
| 	if rtid == timeTypId && timeBuiltin {
 | |
| 		fn.fe = (*encoder[T]).kTime
 | |
| 	} else if rtid == rawTypId {
 | |
| 		fn.fe = (*encoder[T]).raw
 | |
| 	} else if rtid == rawExtTypId {
 | |
| 		fn.fe = (*encoder[T]).rawExt
 | |
| 		fi.addrE = true
 | |
| 	} else if xfFn := exth.getExt(rtid, checkExt); xfFn != nil {
 | |
| 		fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
 | |
| 		fn.fe = (*encoder[T]).ext
 | |
| 		if rk == reflect.Struct || rk == reflect.Array {
 | |
| 			fi.addrE = true
 | |
| 		}
 | |
| 	} else if ti.flagSelfer || ti.flagSelferPtr {
 | |
| 		fn.fe = (*encoder[T]).selferMarshal
 | |
| 		fi.addrE = ti.flagSelferPtr
 | |
| 	} else if supportMarshalInterfaces && binaryEncoding &&
 | |
| 		(ti.flagBinaryMarshaler || ti.flagBinaryMarshalerPtr) &&
 | |
| 		(ti.flagBinaryUnmarshaler || ti.flagBinaryUnmarshalerPtr) {
 | |
| 		fn.fe = (*encoder[T]).binaryMarshal
 | |
| 		fi.addrE = ti.flagBinaryMarshalerPtr
 | |
| 	} else if supportMarshalInterfaces && !binaryEncoding && json &&
 | |
| 		(ti.flagJsonMarshaler || ti.flagJsonMarshalerPtr) &&
 | |
| 		(ti.flagJsonUnmarshaler || ti.flagJsonUnmarshalerPtr) {
 | |
| 		//If JSON, we should check JSONMarshal before textMarshal
 | |
| 		fn.fe = (*encoder[T]).jsonMarshal
 | |
| 		fi.addrE = ti.flagJsonMarshalerPtr
 | |
| 	} else if supportMarshalInterfaces && !binaryEncoding &&
 | |
| 		(ti.flagTextMarshaler || ti.flagTextMarshalerPtr) &&
 | |
| 		(ti.flagTextUnmarshaler || ti.flagTextUnmarshalerPtr) {
 | |
| 		fn.fe = (*encoder[T]).textMarshal
 | |
| 		fi.addrE = ti.flagTextMarshalerPtr
 | |
| 	} else {
 | |
| 		if fastpathEnabled && (rk == reflect.Map || rk == reflect.Slice || rk == reflect.Array) {
 | |
| 			// by default (without using unsafe),
 | |
| 			// if an array is not addressable, converting from an array to a slice
 | |
| 			// requires an allocation (see helper_not_unsafe.go: func rvGetSlice4Array).
 | |
| 			//
 | |
| 			// (Non-addressable arrays mostly occur as keys/values from a map).
 | |
| 			//
 | |
| 			// However, fastpath functions are mostly for slices of numbers or strings,
 | |
| 			// which are small by definition and thus allocation should be fast/cheap in time.
 | |
| 			//
 | |
| 			// Consequently, the value of doing this quick allocation to elide the overhead cost of
 | |
| 			// non-optimized (not-unsafe) reflection is a fair price.
 | |
| 			var rtid2 uintptr
 | |
| 			if !ti.flagHasPkgPath { // un-named type (slice or mpa or array)
 | |
| 				rtid2 = rtid
 | |
| 				if rk == reflect.Array {
 | |
| 					rtid2 = rt2id(ti.key) // ti.key for arrays = reflect.SliceOf(ti.elem)
 | |
| 				}
 | |
| 				if idx, ok := fastpathAvIndex(rtid2); ok {
 | |
| 					fn.fe = fp[idx].encfn
 | |
| 				}
 | |
| 			} else { // named type (with underlying type of map or slice or array)
 | |
| 				// try to use mapping for underlying type
 | |
| 				xfe, xrt := dh.encFnloadFastpathUnderlying(ti, fp)
 | |
| 				if xfe != nil {
 | |
| 					xfnf := xfe.encfn
 | |
| 					fn.fe = func(e *encoder[T], xf *encFnInfo, xrv reflect.Value) {
 | |
| 						xfnf(e, xf, rvConvert(xrv, xrt))
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		if fn.fe == nil {
 | |
| 			switch rk {
 | |
| 			case reflect.Bool:
 | |
| 				fn.fe = (*encoder[T]).kBool
 | |
| 			case reflect.String:
 | |
| 				// Do not use different functions based on StringToRaw option, as that will statically
 | |
| 				// set the function for a string type, and if the Handle is modified thereafter,
 | |
| 				// behaviour is non-deterministic
 | |
| 				// i.e. DO NOT DO:
 | |
| 				//   if x.StringToRaw {
 | |
| 				//   	fn.fe = (*encoder[T]).kStringToRaw
 | |
| 				//   } else {
 | |
| 				//   	fn.fe = (*encoder[T]).kStringEnc
 | |
| 				//   }
 | |
| 
 | |
| 				fn.fe = (*encoder[T]).kString
 | |
| 			case reflect.Int:
 | |
| 				fn.fe = (*encoder[T]).kInt
 | |
| 			case reflect.Int8:
 | |
| 				fn.fe = (*encoder[T]).kInt8
 | |
| 			case reflect.Int16:
 | |
| 				fn.fe = (*encoder[T]).kInt16
 | |
| 			case reflect.Int32:
 | |
| 				fn.fe = (*encoder[T]).kInt32
 | |
| 			case reflect.Int64:
 | |
| 				fn.fe = (*encoder[T]).kInt64
 | |
| 			case reflect.Uint:
 | |
| 				fn.fe = (*encoder[T]).kUint
 | |
| 			case reflect.Uint8:
 | |
| 				fn.fe = (*encoder[T]).kUint8
 | |
| 			case reflect.Uint16:
 | |
| 				fn.fe = (*encoder[T]).kUint16
 | |
| 			case reflect.Uint32:
 | |
| 				fn.fe = (*encoder[T]).kUint32
 | |
| 			case reflect.Uint64:
 | |
| 				fn.fe = (*encoder[T]).kUint64
 | |
| 			case reflect.Uintptr:
 | |
| 				fn.fe = (*encoder[T]).kUintptr
 | |
| 			case reflect.Float32:
 | |
| 				fn.fe = (*encoder[T]).kFloat32
 | |
| 			case reflect.Float64:
 | |
| 				fn.fe = (*encoder[T]).kFloat64
 | |
| 			case reflect.Complex64:
 | |
| 				fn.fe = (*encoder[T]).kComplex64
 | |
| 			case reflect.Complex128:
 | |
| 				fn.fe = (*encoder[T]).kComplex128
 | |
| 			case reflect.Chan:
 | |
| 				fn.fe = (*encoder[T]).kChan
 | |
| 			case reflect.Slice:
 | |
| 				fn.fe = (*encoder[T]).kSlice
 | |
| 			case reflect.Array:
 | |
| 				fn.fe = (*encoder[T]).kArray
 | |
| 			case reflect.Struct:
 | |
| 				if ti.simple {
 | |
| 					fn.fe = (*encoder[T]).kStructSimple
 | |
| 				} else {
 | |
| 					fn.fe = (*encoder[T]).kStruct
 | |
| 				}
 | |
| 			case reflect.Map:
 | |
| 				fn.fe = (*encoder[T]).kMap
 | |
| 			case reflect.Interface:
 | |
| 				// encode: reflect.Interface are handled already by preEncodeValue
 | |
| 				fn.fe = (*encoder[T]).kErr
 | |
| 			default:
 | |
| 				// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
 | |
| 				fn.fe = (*encoder[T]).kErr
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return
 | |
| }
 |