mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-31 07:32:26 -05:00 
			
		
		
		
	Bumps [golang.org/x/crypto](https://github.com/golang/crypto) from 0.6.0 to 0.7.0. - [Release notes](https://github.com/golang/crypto/releases) - [Commits](https://github.com/golang/crypto/compare/v0.6.0...v0.7.0) --- updated-dependencies: - dependency-name: golang.org/x/crypto dependency-type: direct:production update-type: version-update:semver-minor ... Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
		
			
				
	
	
		
			789 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			789 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2011 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package ssh
 | |
| 
 | |
| import (
 | |
| 	"crypto/aes"
 | |
| 	"crypto/cipher"
 | |
| 	"crypto/des"
 | |
| 	"crypto/rc4"
 | |
| 	"crypto/subtle"
 | |
| 	"encoding/binary"
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"hash"
 | |
| 	"io"
 | |
| 
 | |
| 	"golang.org/x/crypto/chacha20"
 | |
| 	"golang.org/x/crypto/internal/poly1305"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	packetSizeMultiple = 16 // TODO(huin) this should be determined by the cipher.
 | |
| 
 | |
| 	// RFC 4253 section 6.1 defines a minimum packet size of 32768 that implementations
 | |
| 	// MUST be able to process (plus a few more kilobytes for padding and mac). The RFC
 | |
| 	// indicates implementations SHOULD be able to handle larger packet sizes, but then
 | |
| 	// waffles on about reasonable limits.
 | |
| 	//
 | |
| 	// OpenSSH caps their maxPacket at 256kB so we choose to do
 | |
| 	// the same. maxPacket is also used to ensure that uint32
 | |
| 	// length fields do not overflow, so it should remain well
 | |
| 	// below 4G.
 | |
| 	maxPacket = 256 * 1024
 | |
| )
 | |
| 
 | |
| // noneCipher implements cipher.Stream and provides no encryption. It is used
 | |
| // by the transport before the first key-exchange.
 | |
| type noneCipher struct{}
 | |
| 
 | |
| func (c noneCipher) XORKeyStream(dst, src []byte) {
 | |
| 	copy(dst, src)
 | |
| }
 | |
| 
 | |
| func newAESCTR(key, iv []byte) (cipher.Stream, error) {
 | |
| 	c, err := aes.NewCipher(key)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	return cipher.NewCTR(c, iv), nil
 | |
| }
 | |
| 
 | |
| func newRC4(key, iv []byte) (cipher.Stream, error) {
 | |
| 	return rc4.NewCipher(key)
 | |
| }
 | |
| 
 | |
| type cipherMode struct {
 | |
| 	keySize int
 | |
| 	ivSize  int
 | |
| 	create  func(key, iv []byte, macKey []byte, algs directionAlgorithms) (packetCipher, error)
 | |
| }
 | |
| 
 | |
| func streamCipherMode(skip int, createFunc func(key, iv []byte) (cipher.Stream, error)) func(key, iv []byte, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
 | |
| 	return func(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
 | |
| 		stream, err := createFunc(key, iv)
 | |
| 		if err != nil {
 | |
| 			return nil, err
 | |
| 		}
 | |
| 
 | |
| 		var streamDump []byte
 | |
| 		if skip > 0 {
 | |
| 			streamDump = make([]byte, 512)
 | |
| 		}
 | |
| 
 | |
| 		for remainingToDump := skip; remainingToDump > 0; {
 | |
| 			dumpThisTime := remainingToDump
 | |
| 			if dumpThisTime > len(streamDump) {
 | |
| 				dumpThisTime = len(streamDump)
 | |
| 			}
 | |
| 			stream.XORKeyStream(streamDump[:dumpThisTime], streamDump[:dumpThisTime])
 | |
| 			remainingToDump -= dumpThisTime
 | |
| 		}
 | |
| 
 | |
| 		mac := macModes[algs.MAC].new(macKey)
 | |
| 		return &streamPacketCipher{
 | |
| 			mac:       mac,
 | |
| 			etm:       macModes[algs.MAC].etm,
 | |
| 			macResult: make([]byte, mac.Size()),
 | |
| 			cipher:    stream,
 | |
| 		}, nil
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // cipherModes documents properties of supported ciphers. Ciphers not included
 | |
| // are not supported and will not be negotiated, even if explicitly requested in
 | |
| // ClientConfig.Crypto.Ciphers.
 | |
| var cipherModes = map[string]*cipherMode{
 | |
| 	// Ciphers from RFC 4344, which introduced many CTR-based ciphers. Algorithms
 | |
| 	// are defined in the order specified in the RFC.
 | |
| 	"aes128-ctr": {16, aes.BlockSize, streamCipherMode(0, newAESCTR)},
 | |
| 	"aes192-ctr": {24, aes.BlockSize, streamCipherMode(0, newAESCTR)},
 | |
| 	"aes256-ctr": {32, aes.BlockSize, streamCipherMode(0, newAESCTR)},
 | |
| 
 | |
| 	// Ciphers from RFC 4345, which introduces security-improved arcfour ciphers.
 | |
| 	// They are defined in the order specified in the RFC.
 | |
| 	"arcfour128": {16, 0, streamCipherMode(1536, newRC4)},
 | |
| 	"arcfour256": {32, 0, streamCipherMode(1536, newRC4)},
 | |
| 
 | |
| 	// Cipher defined in RFC 4253, which describes SSH Transport Layer Protocol.
 | |
| 	// Note that this cipher is not safe, as stated in RFC 4253: "Arcfour (and
 | |
| 	// RC4) has problems with weak keys, and should be used with caution."
 | |
| 	// RFC 4345 introduces improved versions of Arcfour.
 | |
| 	"arcfour": {16, 0, streamCipherMode(0, newRC4)},
 | |
| 
 | |
| 	// AEAD ciphers
 | |
| 	gcm128CipherID:     {16, 12, newGCMCipher},
 | |
| 	gcm256CipherID:     {32, 12, newGCMCipher},
 | |
| 	chacha20Poly1305ID: {64, 0, newChaCha20Cipher},
 | |
| 
 | |
| 	// CBC mode is insecure and so is not included in the default config.
 | |
| 	// (See https://www.ieee-security.org/TC/SP2013/papers/4977a526.pdf). If absolutely
 | |
| 	// needed, it's possible to specify a custom Config to enable it.
 | |
| 	// You should expect that an active attacker can recover plaintext if
 | |
| 	// you do.
 | |
| 	aes128cbcID: {16, aes.BlockSize, newAESCBCCipher},
 | |
| 
 | |
| 	// 3des-cbc is insecure and is not included in the default
 | |
| 	// config.
 | |
| 	tripledescbcID: {24, des.BlockSize, newTripleDESCBCCipher},
 | |
| }
 | |
| 
 | |
| // prefixLen is the length of the packet prefix that contains the packet length
 | |
| // and number of padding bytes.
 | |
| const prefixLen = 5
 | |
| 
 | |
| // streamPacketCipher is a packetCipher using a stream cipher.
 | |
| type streamPacketCipher struct {
 | |
| 	mac    hash.Hash
 | |
| 	cipher cipher.Stream
 | |
| 	etm    bool
 | |
| 
 | |
| 	// The following members are to avoid per-packet allocations.
 | |
| 	prefix      [prefixLen]byte
 | |
| 	seqNumBytes [4]byte
 | |
| 	padding     [2 * packetSizeMultiple]byte
 | |
| 	packetData  []byte
 | |
| 	macResult   []byte
 | |
| }
 | |
| 
 | |
| // readCipherPacket reads and decrypt a single packet from the reader argument.
 | |
| func (s *streamPacketCipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) {
 | |
| 	if _, err := io.ReadFull(r, s.prefix[:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	var encryptedPaddingLength [1]byte
 | |
| 	if s.mac != nil && s.etm {
 | |
| 		copy(encryptedPaddingLength[:], s.prefix[4:5])
 | |
| 		s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5])
 | |
| 	} else {
 | |
| 		s.cipher.XORKeyStream(s.prefix[:], s.prefix[:])
 | |
| 	}
 | |
| 
 | |
| 	length := binary.BigEndian.Uint32(s.prefix[0:4])
 | |
| 	paddingLength := uint32(s.prefix[4])
 | |
| 
 | |
| 	var macSize uint32
 | |
| 	if s.mac != nil {
 | |
| 		s.mac.Reset()
 | |
| 		binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum)
 | |
| 		s.mac.Write(s.seqNumBytes[:])
 | |
| 		if s.etm {
 | |
| 			s.mac.Write(s.prefix[:4])
 | |
| 			s.mac.Write(encryptedPaddingLength[:])
 | |
| 		} else {
 | |
| 			s.mac.Write(s.prefix[:])
 | |
| 		}
 | |
| 		macSize = uint32(s.mac.Size())
 | |
| 	}
 | |
| 
 | |
| 	if length <= paddingLength+1 {
 | |
| 		return nil, errors.New("ssh: invalid packet length, packet too small")
 | |
| 	}
 | |
| 
 | |
| 	if length > maxPacket {
 | |
| 		return nil, errors.New("ssh: invalid packet length, packet too large")
 | |
| 	}
 | |
| 
 | |
| 	// the maxPacket check above ensures that length-1+macSize
 | |
| 	// does not overflow.
 | |
| 	if uint32(cap(s.packetData)) < length-1+macSize {
 | |
| 		s.packetData = make([]byte, length-1+macSize)
 | |
| 	} else {
 | |
| 		s.packetData = s.packetData[:length-1+macSize]
 | |
| 	}
 | |
| 
 | |
| 	if _, err := io.ReadFull(r, s.packetData); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	mac := s.packetData[length-1:]
 | |
| 	data := s.packetData[:length-1]
 | |
| 
 | |
| 	if s.mac != nil && s.etm {
 | |
| 		s.mac.Write(data)
 | |
| 	}
 | |
| 
 | |
| 	s.cipher.XORKeyStream(data, data)
 | |
| 
 | |
| 	if s.mac != nil {
 | |
| 		if !s.etm {
 | |
| 			s.mac.Write(data)
 | |
| 		}
 | |
| 		s.macResult = s.mac.Sum(s.macResult[:0])
 | |
| 		if subtle.ConstantTimeCompare(s.macResult, mac) != 1 {
 | |
| 			return nil, errors.New("ssh: MAC failure")
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return s.packetData[:length-paddingLength-1], nil
 | |
| }
 | |
| 
 | |
| // writeCipherPacket encrypts and sends a packet of data to the writer argument
 | |
| func (s *streamPacketCipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error {
 | |
| 	if len(packet) > maxPacket {
 | |
| 		return errors.New("ssh: packet too large")
 | |
| 	}
 | |
| 
 | |
| 	aadlen := 0
 | |
| 	if s.mac != nil && s.etm {
 | |
| 		// packet length is not encrypted for EtM modes
 | |
| 		aadlen = 4
 | |
| 	}
 | |
| 
 | |
| 	paddingLength := packetSizeMultiple - (prefixLen+len(packet)-aadlen)%packetSizeMultiple
 | |
| 	if paddingLength < 4 {
 | |
| 		paddingLength += packetSizeMultiple
 | |
| 	}
 | |
| 
 | |
| 	length := len(packet) + 1 + paddingLength
 | |
| 	binary.BigEndian.PutUint32(s.prefix[:], uint32(length))
 | |
| 	s.prefix[4] = byte(paddingLength)
 | |
| 	padding := s.padding[:paddingLength]
 | |
| 	if _, err := io.ReadFull(rand, padding); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	if s.mac != nil {
 | |
| 		s.mac.Reset()
 | |
| 		binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum)
 | |
| 		s.mac.Write(s.seqNumBytes[:])
 | |
| 
 | |
| 		if s.etm {
 | |
| 			// For EtM algorithms, the packet length must stay unencrypted,
 | |
| 			// but the following data (padding length) must be encrypted
 | |
| 			s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5])
 | |
| 		}
 | |
| 
 | |
| 		s.mac.Write(s.prefix[:])
 | |
| 
 | |
| 		if !s.etm {
 | |
| 			// For non-EtM algorithms, the algorithm is applied on unencrypted data
 | |
| 			s.mac.Write(packet)
 | |
| 			s.mac.Write(padding)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if !(s.mac != nil && s.etm) {
 | |
| 		// For EtM algorithms, the padding length has already been encrypted
 | |
| 		// and the packet length must remain unencrypted
 | |
| 		s.cipher.XORKeyStream(s.prefix[:], s.prefix[:])
 | |
| 	}
 | |
| 
 | |
| 	s.cipher.XORKeyStream(packet, packet)
 | |
| 	s.cipher.XORKeyStream(padding, padding)
 | |
| 
 | |
| 	if s.mac != nil && s.etm {
 | |
| 		// For EtM algorithms, packet and padding must be encrypted
 | |
| 		s.mac.Write(packet)
 | |
| 		s.mac.Write(padding)
 | |
| 	}
 | |
| 
 | |
| 	if _, err := w.Write(s.prefix[:]); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	if _, err := w.Write(packet); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	if _, err := w.Write(padding); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	if s.mac != nil {
 | |
| 		s.macResult = s.mac.Sum(s.macResult[:0])
 | |
| 		if _, err := w.Write(s.macResult); err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| type gcmCipher struct {
 | |
| 	aead   cipher.AEAD
 | |
| 	prefix [4]byte
 | |
| 	iv     []byte
 | |
| 	buf    []byte
 | |
| }
 | |
| 
 | |
| func newGCMCipher(key, iv, unusedMacKey []byte, unusedAlgs directionAlgorithms) (packetCipher, error) {
 | |
| 	c, err := aes.NewCipher(key)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	aead, err := cipher.NewGCM(c)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	return &gcmCipher{
 | |
| 		aead: aead,
 | |
| 		iv:   iv,
 | |
| 	}, nil
 | |
| }
 | |
| 
 | |
| const gcmTagSize = 16
 | |
| 
 | |
| func (c *gcmCipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error {
 | |
| 	// Pad out to multiple of 16 bytes. This is different from the
 | |
| 	// stream cipher because that encrypts the length too.
 | |
| 	padding := byte(packetSizeMultiple - (1+len(packet))%packetSizeMultiple)
 | |
| 	if padding < 4 {
 | |
| 		padding += packetSizeMultiple
 | |
| 	}
 | |
| 
 | |
| 	length := uint32(len(packet) + int(padding) + 1)
 | |
| 	binary.BigEndian.PutUint32(c.prefix[:], length)
 | |
| 	if _, err := w.Write(c.prefix[:]); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	if cap(c.buf) < int(length) {
 | |
| 		c.buf = make([]byte, length)
 | |
| 	} else {
 | |
| 		c.buf = c.buf[:length]
 | |
| 	}
 | |
| 
 | |
| 	c.buf[0] = padding
 | |
| 	copy(c.buf[1:], packet)
 | |
| 	if _, err := io.ReadFull(rand, c.buf[1+len(packet):]); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	c.buf = c.aead.Seal(c.buf[:0], c.iv, c.buf, c.prefix[:])
 | |
| 	if _, err := w.Write(c.buf); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	c.incIV()
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func (c *gcmCipher) incIV() {
 | |
| 	for i := 4 + 7; i >= 4; i-- {
 | |
| 		c.iv[i]++
 | |
| 		if c.iv[i] != 0 {
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (c *gcmCipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) {
 | |
| 	if _, err := io.ReadFull(r, c.prefix[:]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	length := binary.BigEndian.Uint32(c.prefix[:])
 | |
| 	if length > maxPacket {
 | |
| 		return nil, errors.New("ssh: max packet length exceeded")
 | |
| 	}
 | |
| 
 | |
| 	if cap(c.buf) < int(length+gcmTagSize) {
 | |
| 		c.buf = make([]byte, length+gcmTagSize)
 | |
| 	} else {
 | |
| 		c.buf = c.buf[:length+gcmTagSize]
 | |
| 	}
 | |
| 
 | |
| 	if _, err := io.ReadFull(r, c.buf); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	plain, err := c.aead.Open(c.buf[:0], c.iv, c.buf, c.prefix[:])
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	c.incIV()
 | |
| 
 | |
| 	if len(plain) == 0 {
 | |
| 		return nil, errors.New("ssh: empty packet")
 | |
| 	}
 | |
| 
 | |
| 	padding := plain[0]
 | |
| 	if padding < 4 {
 | |
| 		// padding is a byte, so it automatically satisfies
 | |
| 		// the maximum size, which is 255.
 | |
| 		return nil, fmt.Errorf("ssh: illegal padding %d", padding)
 | |
| 	}
 | |
| 
 | |
| 	if int(padding+1) >= len(plain) {
 | |
| 		return nil, fmt.Errorf("ssh: padding %d too large", padding)
 | |
| 	}
 | |
| 	plain = plain[1 : length-uint32(padding)]
 | |
| 	return plain, nil
 | |
| }
 | |
| 
 | |
| // cbcCipher implements aes128-cbc cipher defined in RFC 4253 section 6.1
 | |
| type cbcCipher struct {
 | |
| 	mac       hash.Hash
 | |
| 	macSize   uint32
 | |
| 	decrypter cipher.BlockMode
 | |
| 	encrypter cipher.BlockMode
 | |
| 
 | |
| 	// The following members are to avoid per-packet allocations.
 | |
| 	seqNumBytes [4]byte
 | |
| 	packetData  []byte
 | |
| 	macResult   []byte
 | |
| 
 | |
| 	// Amount of data we should still read to hide which
 | |
| 	// verification error triggered.
 | |
| 	oracleCamouflage uint32
 | |
| }
 | |
| 
 | |
| func newCBCCipher(c cipher.Block, key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
 | |
| 	cbc := &cbcCipher{
 | |
| 		mac:        macModes[algs.MAC].new(macKey),
 | |
| 		decrypter:  cipher.NewCBCDecrypter(c, iv),
 | |
| 		encrypter:  cipher.NewCBCEncrypter(c, iv),
 | |
| 		packetData: make([]byte, 1024),
 | |
| 	}
 | |
| 	if cbc.mac != nil {
 | |
| 		cbc.macSize = uint32(cbc.mac.Size())
 | |
| 	}
 | |
| 
 | |
| 	return cbc, nil
 | |
| }
 | |
| 
 | |
| func newAESCBCCipher(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
 | |
| 	c, err := aes.NewCipher(key)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	cbc, err := newCBCCipher(c, key, iv, macKey, algs)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	return cbc, nil
 | |
| }
 | |
| 
 | |
| func newTripleDESCBCCipher(key, iv, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
 | |
| 	c, err := des.NewTripleDESCipher(key)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	cbc, err := newCBCCipher(c, key, iv, macKey, algs)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	return cbc, nil
 | |
| }
 | |
| 
 | |
| func maxUInt32(a, b int) uint32 {
 | |
| 	if a > b {
 | |
| 		return uint32(a)
 | |
| 	}
 | |
| 	return uint32(b)
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	cbcMinPacketSizeMultiple = 8
 | |
| 	cbcMinPacketSize         = 16
 | |
| 	cbcMinPaddingSize        = 4
 | |
| )
 | |
| 
 | |
| // cbcError represents a verification error that may leak information.
 | |
| type cbcError string
 | |
| 
 | |
| func (e cbcError) Error() string { return string(e) }
 | |
| 
 | |
| func (c *cbcCipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) {
 | |
| 	p, err := c.readCipherPacketLeaky(seqNum, r)
 | |
| 	if err != nil {
 | |
| 		if _, ok := err.(cbcError); ok {
 | |
| 			// Verification error: read a fixed amount of
 | |
| 			// data, to make distinguishing between
 | |
| 			// failing MAC and failing length check more
 | |
| 			// difficult.
 | |
| 			io.CopyN(io.Discard, r, int64(c.oracleCamouflage))
 | |
| 		}
 | |
| 	}
 | |
| 	return p, err
 | |
| }
 | |
| 
 | |
| func (c *cbcCipher) readCipherPacketLeaky(seqNum uint32, r io.Reader) ([]byte, error) {
 | |
| 	blockSize := c.decrypter.BlockSize()
 | |
| 
 | |
| 	// Read the header, which will include some of the subsequent data in the
 | |
| 	// case of block ciphers - this is copied back to the payload later.
 | |
| 	// How many bytes of payload/padding will be read with this first read.
 | |
| 	firstBlockLength := uint32((prefixLen + blockSize - 1) / blockSize * blockSize)
 | |
| 	firstBlock := c.packetData[:firstBlockLength]
 | |
| 	if _, err := io.ReadFull(r, firstBlock); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	c.oracleCamouflage = maxPacket + 4 + c.macSize - firstBlockLength
 | |
| 
 | |
| 	c.decrypter.CryptBlocks(firstBlock, firstBlock)
 | |
| 	length := binary.BigEndian.Uint32(firstBlock[:4])
 | |
| 	if length > maxPacket {
 | |
| 		return nil, cbcError("ssh: packet too large")
 | |
| 	}
 | |
| 	if length+4 < maxUInt32(cbcMinPacketSize, blockSize) {
 | |
| 		// The minimum size of a packet is 16 (or the cipher block size, whichever
 | |
| 		// is larger) bytes.
 | |
| 		return nil, cbcError("ssh: packet too small")
 | |
| 	}
 | |
| 	// The length of the packet (including the length field but not the MAC) must
 | |
| 	// be a multiple of the block size or 8, whichever is larger.
 | |
| 	if (length+4)%maxUInt32(cbcMinPacketSizeMultiple, blockSize) != 0 {
 | |
| 		return nil, cbcError("ssh: invalid packet length multiple")
 | |
| 	}
 | |
| 
 | |
| 	paddingLength := uint32(firstBlock[4])
 | |
| 	if paddingLength < cbcMinPaddingSize || length <= paddingLength+1 {
 | |
| 		return nil, cbcError("ssh: invalid packet length")
 | |
| 	}
 | |
| 
 | |
| 	// Positions within the c.packetData buffer:
 | |
| 	macStart := 4 + length
 | |
| 	paddingStart := macStart - paddingLength
 | |
| 
 | |
| 	// Entire packet size, starting before length, ending at end of mac.
 | |
| 	entirePacketSize := macStart + c.macSize
 | |
| 
 | |
| 	// Ensure c.packetData is large enough for the entire packet data.
 | |
| 	if uint32(cap(c.packetData)) < entirePacketSize {
 | |
| 		// Still need to upsize and copy, but this should be rare at runtime, only
 | |
| 		// on upsizing the packetData buffer.
 | |
| 		c.packetData = make([]byte, entirePacketSize)
 | |
| 		copy(c.packetData, firstBlock)
 | |
| 	} else {
 | |
| 		c.packetData = c.packetData[:entirePacketSize]
 | |
| 	}
 | |
| 
 | |
| 	n, err := io.ReadFull(r, c.packetData[firstBlockLength:])
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	c.oracleCamouflage -= uint32(n)
 | |
| 
 | |
| 	remainingCrypted := c.packetData[firstBlockLength:macStart]
 | |
| 	c.decrypter.CryptBlocks(remainingCrypted, remainingCrypted)
 | |
| 
 | |
| 	mac := c.packetData[macStart:]
 | |
| 	if c.mac != nil {
 | |
| 		c.mac.Reset()
 | |
| 		binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum)
 | |
| 		c.mac.Write(c.seqNumBytes[:])
 | |
| 		c.mac.Write(c.packetData[:macStart])
 | |
| 		c.macResult = c.mac.Sum(c.macResult[:0])
 | |
| 		if subtle.ConstantTimeCompare(c.macResult, mac) != 1 {
 | |
| 			return nil, cbcError("ssh: MAC failure")
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return c.packetData[prefixLen:paddingStart], nil
 | |
| }
 | |
| 
 | |
| func (c *cbcCipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error {
 | |
| 	effectiveBlockSize := maxUInt32(cbcMinPacketSizeMultiple, c.encrypter.BlockSize())
 | |
| 
 | |
| 	// Length of encrypted portion of the packet (header, payload, padding).
 | |
| 	// Enforce minimum padding and packet size.
 | |
| 	encLength := maxUInt32(prefixLen+len(packet)+cbcMinPaddingSize, cbcMinPaddingSize)
 | |
| 	// Enforce block size.
 | |
| 	encLength = (encLength + effectiveBlockSize - 1) / effectiveBlockSize * effectiveBlockSize
 | |
| 
 | |
| 	length := encLength - 4
 | |
| 	paddingLength := int(length) - (1 + len(packet))
 | |
| 
 | |
| 	// Overall buffer contains: header, payload, padding, mac.
 | |
| 	// Space for the MAC is reserved in the capacity but not the slice length.
 | |
| 	bufferSize := encLength + c.macSize
 | |
| 	if uint32(cap(c.packetData)) < bufferSize {
 | |
| 		c.packetData = make([]byte, encLength, bufferSize)
 | |
| 	} else {
 | |
| 		c.packetData = c.packetData[:encLength]
 | |
| 	}
 | |
| 
 | |
| 	p := c.packetData
 | |
| 
 | |
| 	// Packet header.
 | |
| 	binary.BigEndian.PutUint32(p, length)
 | |
| 	p = p[4:]
 | |
| 	p[0] = byte(paddingLength)
 | |
| 
 | |
| 	// Payload.
 | |
| 	p = p[1:]
 | |
| 	copy(p, packet)
 | |
| 
 | |
| 	// Padding.
 | |
| 	p = p[len(packet):]
 | |
| 	if _, err := io.ReadFull(rand, p); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	if c.mac != nil {
 | |
| 		c.mac.Reset()
 | |
| 		binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum)
 | |
| 		c.mac.Write(c.seqNumBytes[:])
 | |
| 		c.mac.Write(c.packetData)
 | |
| 		// The MAC is now appended into the capacity reserved for it earlier.
 | |
| 		c.packetData = c.mac.Sum(c.packetData)
 | |
| 	}
 | |
| 
 | |
| 	c.encrypter.CryptBlocks(c.packetData[:encLength], c.packetData[:encLength])
 | |
| 
 | |
| 	if _, err := w.Write(c.packetData); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| const chacha20Poly1305ID = "chacha20-poly1305@openssh.com"
 | |
| 
 | |
| // chacha20Poly1305Cipher implements the chacha20-poly1305@openssh.com
 | |
| // AEAD, which is described here:
 | |
| //
 | |
| //	https://tools.ietf.org/html/draft-josefsson-ssh-chacha20-poly1305-openssh-00
 | |
| //
 | |
| // the methods here also implement padding, which RFC 4253 Section 6
 | |
| // also requires of stream ciphers.
 | |
| type chacha20Poly1305Cipher struct {
 | |
| 	lengthKey  [32]byte
 | |
| 	contentKey [32]byte
 | |
| 	buf        []byte
 | |
| }
 | |
| 
 | |
| func newChaCha20Cipher(key, unusedIV, unusedMACKey []byte, unusedAlgs directionAlgorithms) (packetCipher, error) {
 | |
| 	if len(key) != 64 {
 | |
| 		panic(len(key))
 | |
| 	}
 | |
| 
 | |
| 	c := &chacha20Poly1305Cipher{
 | |
| 		buf: make([]byte, 256),
 | |
| 	}
 | |
| 
 | |
| 	copy(c.contentKey[:], key[:32])
 | |
| 	copy(c.lengthKey[:], key[32:])
 | |
| 	return c, nil
 | |
| }
 | |
| 
 | |
| func (c *chacha20Poly1305Cipher) readCipherPacket(seqNum uint32, r io.Reader) ([]byte, error) {
 | |
| 	nonce := make([]byte, 12)
 | |
| 	binary.BigEndian.PutUint32(nonce[8:], seqNum)
 | |
| 	s, err := chacha20.NewUnauthenticatedCipher(c.contentKey[:], nonce)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	var polyKey, discardBuf [32]byte
 | |
| 	s.XORKeyStream(polyKey[:], polyKey[:])
 | |
| 	s.XORKeyStream(discardBuf[:], discardBuf[:]) // skip the next 32 bytes
 | |
| 
 | |
| 	encryptedLength := c.buf[:4]
 | |
| 	if _, err := io.ReadFull(r, encryptedLength); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	var lenBytes [4]byte
 | |
| 	ls, err := chacha20.NewUnauthenticatedCipher(c.lengthKey[:], nonce)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	ls.XORKeyStream(lenBytes[:], encryptedLength)
 | |
| 
 | |
| 	length := binary.BigEndian.Uint32(lenBytes[:])
 | |
| 	if length > maxPacket {
 | |
| 		return nil, errors.New("ssh: invalid packet length, packet too large")
 | |
| 	}
 | |
| 
 | |
| 	contentEnd := 4 + length
 | |
| 	packetEnd := contentEnd + poly1305.TagSize
 | |
| 	if uint32(cap(c.buf)) < packetEnd {
 | |
| 		c.buf = make([]byte, packetEnd)
 | |
| 		copy(c.buf[:], encryptedLength)
 | |
| 	} else {
 | |
| 		c.buf = c.buf[:packetEnd]
 | |
| 	}
 | |
| 
 | |
| 	if _, err := io.ReadFull(r, c.buf[4:packetEnd]); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	var mac [poly1305.TagSize]byte
 | |
| 	copy(mac[:], c.buf[contentEnd:packetEnd])
 | |
| 	if !poly1305.Verify(&mac, c.buf[:contentEnd], &polyKey) {
 | |
| 		return nil, errors.New("ssh: MAC failure")
 | |
| 	}
 | |
| 
 | |
| 	plain := c.buf[4:contentEnd]
 | |
| 	s.XORKeyStream(plain, plain)
 | |
| 
 | |
| 	if len(plain) == 0 {
 | |
| 		return nil, errors.New("ssh: empty packet")
 | |
| 	}
 | |
| 
 | |
| 	padding := plain[0]
 | |
| 	if padding < 4 {
 | |
| 		// padding is a byte, so it automatically satisfies
 | |
| 		// the maximum size, which is 255.
 | |
| 		return nil, fmt.Errorf("ssh: illegal padding %d", padding)
 | |
| 	}
 | |
| 
 | |
| 	if int(padding)+1 >= len(plain) {
 | |
| 		return nil, fmt.Errorf("ssh: padding %d too large", padding)
 | |
| 	}
 | |
| 
 | |
| 	plain = plain[1 : len(plain)-int(padding)]
 | |
| 
 | |
| 	return plain, nil
 | |
| }
 | |
| 
 | |
| func (c *chacha20Poly1305Cipher) writeCipherPacket(seqNum uint32, w io.Writer, rand io.Reader, payload []byte) error {
 | |
| 	nonce := make([]byte, 12)
 | |
| 	binary.BigEndian.PutUint32(nonce[8:], seqNum)
 | |
| 	s, err := chacha20.NewUnauthenticatedCipher(c.contentKey[:], nonce)
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	var polyKey, discardBuf [32]byte
 | |
| 	s.XORKeyStream(polyKey[:], polyKey[:])
 | |
| 	s.XORKeyStream(discardBuf[:], discardBuf[:]) // skip the next 32 bytes
 | |
| 
 | |
| 	// There is no blocksize, so fall back to multiple of 8 byte
 | |
| 	// padding, as described in RFC 4253, Sec 6.
 | |
| 	const packetSizeMultiple = 8
 | |
| 
 | |
| 	padding := packetSizeMultiple - (1+len(payload))%packetSizeMultiple
 | |
| 	if padding < 4 {
 | |
| 		padding += packetSizeMultiple
 | |
| 	}
 | |
| 
 | |
| 	// size (4 bytes), padding (1), payload, padding, tag.
 | |
| 	totalLength := 4 + 1 + len(payload) + padding + poly1305.TagSize
 | |
| 	if cap(c.buf) < totalLength {
 | |
| 		c.buf = make([]byte, totalLength)
 | |
| 	} else {
 | |
| 		c.buf = c.buf[:totalLength]
 | |
| 	}
 | |
| 
 | |
| 	binary.BigEndian.PutUint32(c.buf, uint32(1+len(payload)+padding))
 | |
| 	ls, err := chacha20.NewUnauthenticatedCipher(c.lengthKey[:], nonce)
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	ls.XORKeyStream(c.buf, c.buf[:4])
 | |
| 	c.buf[4] = byte(padding)
 | |
| 	copy(c.buf[5:], payload)
 | |
| 	packetEnd := 5 + len(payload) + padding
 | |
| 	if _, err := io.ReadFull(rand, c.buf[5+len(payload):packetEnd]); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	s.XORKeyStream(c.buf[4:], c.buf[4:packetEnd])
 | |
| 
 | |
| 	var mac [poly1305.TagSize]byte
 | |
| 	poly1305.Sum(&mac, c.buf[:packetEnd], &polyKey)
 | |
| 
 | |
| 	copy(c.buf[packetEnd:], mac[:])
 | |
| 
 | |
| 	if _, err := w.Write(c.buf); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	return nil
 | |
| }
 |