mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-11-03 22:12:26 -06:00 
			
		
		
		
	* add back exif-terminator and use only for jpeg,png,webp * fix arguments passed to terminateExif() * pull in latest exif-terminator * fix test * update processed img --------- Co-authored-by: tobi <tobi.smethurst@protonmail.com>
		
			
				
	
	
		
			258 lines
		
	
	
	
		
			9.2 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			258 lines
		
	
	
	
		
			9.2 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2014 Google Inc. All rights reserved.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
package s2
 | 
						|
 | 
						|
import (
 | 
						|
	"fmt"
 | 
						|
	"io"
 | 
						|
	"math"
 | 
						|
	"sort"
 | 
						|
 | 
						|
	"github.com/golang/geo/r3"
 | 
						|
	"github.com/golang/geo/s1"
 | 
						|
)
 | 
						|
 | 
						|
// Point represents a point on the unit sphere as a normalized 3D vector.
 | 
						|
// Fields should be treated as read-only. Use one of the factory methods for creation.
 | 
						|
type Point struct {
 | 
						|
	r3.Vector
 | 
						|
}
 | 
						|
 | 
						|
// sortPoints sorts the slice of Points in place.
 | 
						|
func sortPoints(e []Point) {
 | 
						|
	sort.Sort(points(e))
 | 
						|
}
 | 
						|
 | 
						|
// points implements the Sort interface for slices of Point.
 | 
						|
type points []Point
 | 
						|
 | 
						|
func (p points) Len() int           { return len(p) }
 | 
						|
func (p points) Swap(i, j int)      { p[i], p[j] = p[j], p[i] }
 | 
						|
func (p points) Less(i, j int) bool { return p[i].Cmp(p[j].Vector) == -1 }
 | 
						|
 | 
						|
// PointFromCoords creates a new normalized point from coordinates.
 | 
						|
//
 | 
						|
// This always returns a valid point. If the given coordinates can not be normalized
 | 
						|
// the origin point will be returned.
 | 
						|
//
 | 
						|
// This behavior is different from the C++ construction of a S2Point from coordinates
 | 
						|
// (i.e. S2Point(x, y, z)) in that in C++ they do not Normalize.
 | 
						|
func PointFromCoords(x, y, z float64) Point {
 | 
						|
	if x == 0 && y == 0 && z == 0 {
 | 
						|
		return OriginPoint()
 | 
						|
	}
 | 
						|
	return Point{r3.Vector{x, y, z}.Normalize()}
 | 
						|
}
 | 
						|
 | 
						|
// OriginPoint returns a unique "origin" on the sphere for operations that need a fixed
 | 
						|
// reference point. In particular, this is the "point at infinity" used for
 | 
						|
// point-in-polygon testing (by counting the number of edge crossings).
 | 
						|
//
 | 
						|
// It should *not* be a point that is commonly used in edge tests in order
 | 
						|
// to avoid triggering code to handle degenerate cases (this rules out the
 | 
						|
// north and south poles). It should also not be on the boundary of any
 | 
						|
// low-level S2Cell for the same reason.
 | 
						|
func OriginPoint() Point {
 | 
						|
	return Point{r3.Vector{-0.0099994664350250197, 0.0025924542609324121, 0.99994664350250195}}
 | 
						|
}
 | 
						|
 | 
						|
// PointCross returns a Point that is orthogonal to both p and op. This is similar to
 | 
						|
// p.Cross(op) (the true cross product) except that it does a better job of
 | 
						|
// ensuring orthogonality when the Point is nearly parallel to op, it returns
 | 
						|
// a non-zero result even when p == op or p == -op and the result is a Point.
 | 
						|
//
 | 
						|
// It satisfies the following properties (f == PointCross):
 | 
						|
//
 | 
						|
//   (1) f(p, op) != 0 for all p, op
 | 
						|
//   (2) f(op,p) == -f(p,op) unless p == op or p == -op
 | 
						|
//   (3) f(-p,op) == -f(p,op) unless p == op or p == -op
 | 
						|
//   (4) f(p,-op) == -f(p,op) unless p == op or p == -op
 | 
						|
func (p Point) PointCross(op Point) Point {
 | 
						|
	// NOTE(dnadasi): In the C++ API the equivalent method here was known as "RobustCrossProd",
 | 
						|
	// but PointCross more accurately describes how this method is used.
 | 
						|
	x := p.Add(op.Vector).Cross(op.Sub(p.Vector))
 | 
						|
 | 
						|
	// Compare exactly to the 0 vector.
 | 
						|
	if x == (r3.Vector{}) {
 | 
						|
		// The only result that makes sense mathematically is to return zero, but
 | 
						|
		// we find it more convenient to return an arbitrary orthogonal vector.
 | 
						|
		return Point{p.Ortho()}
 | 
						|
	}
 | 
						|
 | 
						|
	return Point{x}
 | 
						|
}
 | 
						|
 | 
						|
// OrderedCCW returns true if the edges OA, OB, and OC are encountered in that
 | 
						|
// order while sweeping CCW around the point O.
 | 
						|
//
 | 
						|
// You can think of this as testing whether A <= B <= C with respect to the
 | 
						|
// CCW ordering around O that starts at A, or equivalently, whether B is
 | 
						|
// contained in the range of angles (inclusive) that starts at A and extends
 | 
						|
// CCW to C. Properties:
 | 
						|
//
 | 
						|
//  (1) If OrderedCCW(a,b,c,o) && OrderedCCW(b,a,c,o), then a == b
 | 
						|
//  (2) If OrderedCCW(a,b,c,o) && OrderedCCW(a,c,b,o), then b == c
 | 
						|
//  (3) If OrderedCCW(a,b,c,o) && OrderedCCW(c,b,a,o), then a == b == c
 | 
						|
//  (4) If a == b or b == c, then OrderedCCW(a,b,c,o) is true
 | 
						|
//  (5) Otherwise if a == c, then OrderedCCW(a,b,c,o) is false
 | 
						|
func OrderedCCW(a, b, c, o Point) bool {
 | 
						|
	sum := 0
 | 
						|
	if RobustSign(b, o, a) != Clockwise {
 | 
						|
		sum++
 | 
						|
	}
 | 
						|
	if RobustSign(c, o, b) != Clockwise {
 | 
						|
		sum++
 | 
						|
	}
 | 
						|
	if RobustSign(a, o, c) == CounterClockwise {
 | 
						|
		sum++
 | 
						|
	}
 | 
						|
	return sum >= 2
 | 
						|
}
 | 
						|
 | 
						|
// Distance returns the angle between two points.
 | 
						|
func (p Point) Distance(b Point) s1.Angle {
 | 
						|
	return p.Vector.Angle(b.Vector)
 | 
						|
}
 | 
						|
 | 
						|
// ApproxEqual reports whether the two points are similar enough to be equal.
 | 
						|
func (p Point) ApproxEqual(other Point) bool {
 | 
						|
	return p.approxEqual(other, s1.Angle(epsilon))
 | 
						|
}
 | 
						|
 | 
						|
// approxEqual reports whether the two points are within the given epsilon.
 | 
						|
func (p Point) approxEqual(other Point, eps s1.Angle) bool {
 | 
						|
	return p.Vector.Angle(other.Vector) <= eps
 | 
						|
}
 | 
						|
 | 
						|
// ChordAngleBetweenPoints constructs a ChordAngle corresponding to the distance
 | 
						|
// between the two given points. The points must be unit length.
 | 
						|
func ChordAngleBetweenPoints(x, y Point) s1.ChordAngle {
 | 
						|
	return s1.ChordAngle(math.Min(4.0, x.Sub(y.Vector).Norm2()))
 | 
						|
}
 | 
						|
 | 
						|
// regularPoints generates a slice of points shaped as a regular polygon with
 | 
						|
// the numVertices vertices, all located on a circle of the specified angular radius
 | 
						|
// around the center. The radius is the actual distance from center to each vertex.
 | 
						|
func regularPoints(center Point, radius s1.Angle, numVertices int) []Point {
 | 
						|
	return regularPointsForFrame(getFrame(center), radius, numVertices)
 | 
						|
}
 | 
						|
 | 
						|
// regularPointsForFrame generates a slice of points shaped as a regular polygon
 | 
						|
// with numVertices vertices, all on a circle of the specified angular radius around
 | 
						|
// the center. The radius is the actual distance from the center to each vertex.
 | 
						|
func regularPointsForFrame(frame matrix3x3, radius s1.Angle, numVertices int) []Point {
 | 
						|
	// We construct the loop in the given frame coordinates, with the center at
 | 
						|
	// (0, 0, 1). For a loop of radius r, the loop vertices have the form
 | 
						|
	// (x, y, z) where x^2 + y^2 = sin(r) and z = cos(r). The distance on the
 | 
						|
	// sphere (arc length) from each vertex to the center is acos(cos(r)) = r.
 | 
						|
	z := math.Cos(radius.Radians())
 | 
						|
	r := math.Sin(radius.Radians())
 | 
						|
	radianStep := 2 * math.Pi / float64(numVertices)
 | 
						|
	var vertices []Point
 | 
						|
 | 
						|
	for i := 0; i < numVertices; i++ {
 | 
						|
		angle := float64(i) * radianStep
 | 
						|
		p := Point{r3.Vector{r * math.Cos(angle), r * math.Sin(angle), z}}
 | 
						|
		vertices = append(vertices, Point{fromFrame(frame, p).Normalize()})
 | 
						|
	}
 | 
						|
 | 
						|
	return vertices
 | 
						|
}
 | 
						|
 | 
						|
// CapBound returns a bounding cap for this point.
 | 
						|
func (p Point) CapBound() Cap {
 | 
						|
	return CapFromPoint(p)
 | 
						|
}
 | 
						|
 | 
						|
// RectBound returns a bounding latitude-longitude rectangle from this point.
 | 
						|
func (p Point) RectBound() Rect {
 | 
						|
	return RectFromLatLng(LatLngFromPoint(p))
 | 
						|
}
 | 
						|
 | 
						|
// ContainsCell returns false as Points do not contain any other S2 types.
 | 
						|
func (p Point) ContainsCell(c Cell) bool { return false }
 | 
						|
 | 
						|
// IntersectsCell reports whether this Point intersects the given cell.
 | 
						|
func (p Point) IntersectsCell(c Cell) bool {
 | 
						|
	return c.ContainsPoint(p)
 | 
						|
}
 | 
						|
 | 
						|
// ContainsPoint reports if this Point contains the other Point.
 | 
						|
// (This method is named to satisfy the Region interface.)
 | 
						|
func (p Point) ContainsPoint(other Point) bool {
 | 
						|
	return p.Contains(other)
 | 
						|
}
 | 
						|
 | 
						|
// CellUnionBound computes a covering of the Point.
 | 
						|
func (p Point) CellUnionBound() []CellID {
 | 
						|
	return p.CapBound().CellUnionBound()
 | 
						|
}
 | 
						|
 | 
						|
// Contains reports if this Point contains the other Point.
 | 
						|
// (This method matches all other s2 types where the reflexive Contains
 | 
						|
// method does not contain the type's name.)
 | 
						|
func (p Point) Contains(other Point) bool { return p == other }
 | 
						|
 | 
						|
// Encode encodes the Point.
 | 
						|
func (p Point) Encode(w io.Writer) error {
 | 
						|
	e := &encoder{w: w}
 | 
						|
	p.encode(e)
 | 
						|
	return e.err
 | 
						|
}
 | 
						|
 | 
						|
func (p Point) encode(e *encoder) {
 | 
						|
	e.writeInt8(encodingVersion)
 | 
						|
	e.writeFloat64(p.X)
 | 
						|
	e.writeFloat64(p.Y)
 | 
						|
	e.writeFloat64(p.Z)
 | 
						|
}
 | 
						|
 | 
						|
// Decode decodes the Point.
 | 
						|
func (p *Point) Decode(r io.Reader) error {
 | 
						|
	d := &decoder{r: asByteReader(r)}
 | 
						|
	p.decode(d)
 | 
						|
	return d.err
 | 
						|
}
 | 
						|
 | 
						|
func (p *Point) decode(d *decoder) {
 | 
						|
	version := d.readInt8()
 | 
						|
	if d.err != nil {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	if version != encodingVersion {
 | 
						|
		d.err = fmt.Errorf("only version %d is supported", encodingVersion)
 | 
						|
		return
 | 
						|
	}
 | 
						|
	p.X = d.readFloat64()
 | 
						|
	p.Y = d.readFloat64()
 | 
						|
	p.Z = d.readFloat64()
 | 
						|
}
 | 
						|
 | 
						|
// Rotate the given point about the given axis by the given angle. p and
 | 
						|
// axis must be unit length; angle has no restrictions (e.g., it can be
 | 
						|
// positive, negative, greater than 360 degrees, etc).
 | 
						|
func Rotate(p, axis Point, angle s1.Angle) Point {
 | 
						|
	// Let M be the plane through P that is perpendicular to axis, and let
 | 
						|
	// center be the point where M intersects axis. We construct a
 | 
						|
	// right-handed orthogonal frame (dx, dy, center) such that dx is the
 | 
						|
	// vector from center to P, and dy has the same length as dx. The
 | 
						|
	// result can then be expressed as (cos(angle)*dx + sin(angle)*dy + center).
 | 
						|
	center := axis.Mul(p.Dot(axis.Vector))
 | 
						|
	dx := p.Sub(center)
 | 
						|
	dy := axis.Cross(p.Vector)
 | 
						|
	// Mathematically the result is unit length, but normalization is necessary
 | 
						|
	// to ensure that numerical errors don't accumulate.
 | 
						|
	return Point{dx.Mul(math.Cos(angle.Radians())).Add(dy.Mul(math.Sin(angle.Radians()))).Add(center).Normalize()}
 | 
						|
}
 |