mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-31 15:02:24 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			3004 lines
		
	
	
	
		
			85 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			3004 lines
		
	
	
	
		
			85 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright (c) 2012-2020 Ugorji Nwoke. All rights reserved.
 | |
| // Use of this source code is governed by a MIT license found in the LICENSE file.
 | |
| 
 | |
| package codec
 | |
| 
 | |
| // Contains code shared by both encode and decode.
 | |
| 
 | |
| // Some shared ideas around encoding/decoding
 | |
| // ------------------------------------------
 | |
| //
 | |
| // If an interface{} is passed, we first do a type assertion to see if it is
 | |
| // a primitive type or a map/slice of primitive types, and use a fastpath to handle it.
 | |
| //
 | |
| // If we start with a reflect.Value, we are already in reflect.Value land and
 | |
| // will try to grab the function for the underlying Type and directly call that function.
 | |
| // This is more performant than calling reflect.Value.Interface().
 | |
| //
 | |
| // This still helps us bypass many layers of reflection, and give best performance.
 | |
| //
 | |
| // Containers
 | |
| // ------------
 | |
| // Containers in the stream are either associative arrays (key-value pairs) or
 | |
| // regular arrays (indexed by incrementing integers).
 | |
| //
 | |
| // Some streams support indefinite-length containers, and use a breaking
 | |
| // byte-sequence to denote that the container has come to an end.
 | |
| //
 | |
| // Some streams also are text-based, and use explicit separators to denote the
 | |
| // end/beginning of different values.
 | |
| //
 | |
| // Philosophy
 | |
| // ------------
 | |
| // On decode, this codec will update containers appropriately:
 | |
| //    - If struct, update fields from stream into fields of struct.
 | |
| //      If field in stream not found in struct, handle appropriately (based on option).
 | |
| //      If a struct field has no corresponding value in the stream, leave it AS IS.
 | |
| //      If nil in stream, set value to nil/zero value.
 | |
| //    - If map, update map from stream.
 | |
| //      If the stream value is NIL, set the map to nil.
 | |
| //    - if slice, try to update up to length of array in stream.
 | |
| //      if container len is less than stream array length,
 | |
| //      and container cannot be expanded, handled (based on option).
 | |
| //      This means you can decode 4-element stream array into 1-element array.
 | |
| //
 | |
| // ------------------------------------
 | |
| // On encode, user can specify omitEmpty. This means that the value will be omitted
 | |
| // if the zero value. The problem may occur during decode, where omitted values do not affect
 | |
| // the value being decoded into. This means that if decoding into a struct with an
 | |
| // int field with current value=5, and the field is omitted in the stream, then after
 | |
| // decoding, the value will still be 5 (not 0).
 | |
| // omitEmpty only works if you guarantee that you always decode into zero-values.
 | |
| //
 | |
| // ------------------------------------
 | |
| // We could have truncated a map to remove keys not available in the stream,
 | |
| // or set values in the struct which are not in the stream to their zero values.
 | |
| // We decided against it because there is no efficient way to do it.
 | |
| // We may introduce it as an option later.
 | |
| // However, that will require enabling it for both runtime and code generation modes.
 | |
| //
 | |
| // To support truncate, we need to do 2 passes over the container:
 | |
| //   map
 | |
| //   - first collect all keys (e.g. in k1)
 | |
| //   - for each key in stream, mark k1 that the key should not be removed
 | |
| //   - after updating map, do second pass and call delete for all keys in k1 which are not marked
 | |
| //   struct:
 | |
| //   - for each field, track the *typeInfo s1
 | |
| //   - iterate through all s1, and for each one not marked, set value to zero
 | |
| //   - this involves checking the possible anonymous fields which are nil ptrs.
 | |
| //     too much work.
 | |
| //
 | |
| // ------------------------------------------
 | |
| // Error Handling is done within the library using panic.
 | |
| //
 | |
| // This way, the code doesn't have to keep checking if an error has happened,
 | |
| // and we don't have to keep sending the error value along with each call
 | |
| // or storing it in the En|Decoder and checking it constantly along the way.
 | |
| //
 | |
| // We considered storing the error is En|Decoder.
 | |
| //   - once it has its err field set, it cannot be used again.
 | |
| //   - panicing will be optional, controlled by const flag.
 | |
| //   - code should always check error first and return early.
 | |
| //
 | |
| // We eventually decided against it as it makes the code clumsier to always
 | |
| // check for these error conditions.
 | |
| //
 | |
| // ------------------------------------------
 | |
| // We use sync.Pool only for the aid of long-lived objects shared across multiple goroutines.
 | |
| // Encoder, Decoder, enc|decDriver, reader|writer, etc do not fall into this bucket.
 | |
| //
 | |
| // Also, GC is much better now, eliminating some of the reasons to use a shared pool structure.
 | |
| // Instead, the short-lived objects use free-lists that live as long as the object exists.
 | |
| //
 | |
| // ------------------------------------------
 | |
| // Performance is affected by the following:
 | |
| //    - Bounds Checking
 | |
| //    - Inlining
 | |
| //    - Pointer chasing
 | |
| // This package tries hard to manage the performance impact of these.
 | |
| //
 | |
| // ------------------------------------------
 | |
| // To alleviate performance due to pointer-chasing:
 | |
| //    - Prefer non-pointer values in a struct field
 | |
| //    - Refer to these directly within helper classes
 | |
| //      e.g. json.go refers directly to d.d.decRd
 | |
| //
 | |
| // We made the changes to embed En/Decoder in en/decDriver,
 | |
| // but we had to explicitly reference the fields as opposed to using a function
 | |
| // to get the better performance that we were looking for.
 | |
| // For example, we explicitly call d.d.decRd.fn() instead of d.d.r().fn().
 | |
| //
 | |
| // ------------------------------------------
 | |
| // Bounds Checking
 | |
| //    - Allow bytesDecReader to incur "bounds check error", and recover that as an io error.
 | |
| //      This allows the bounds check branch to always be taken by the branch predictor,
 | |
| //      giving better performance (in theory), while ensuring that the code is shorter.
 | |
| //
 | |
| // ------------------------------------------
 | |
| // Escape Analysis
 | |
| //    - Prefer to return non-pointers if the value is used right away.
 | |
| //      Newly allocated values returned as pointers will be heap-allocated as they escape.
 | |
| //
 | |
| // Prefer functions and methods that
 | |
| //    - take no parameters and
 | |
| //    - return no results and
 | |
| //    - do not allocate.
 | |
| // These are optimized by the runtime.
 | |
| // For example, in json, we have dedicated functions for ReadMapElemKey, etc
 | |
| // which do not delegate to readDelim, as readDelim takes a parameter.
 | |
| // The difference in runtime was as much as 5%.
 | |
| //
 | |
| // ------------------------------------------
 | |
| // Handling Nil
 | |
| //   - In dynamic (reflection) mode, decodeValue and encodeValue handle nil at the top
 | |
| //   - Consequently, methods used with them as a parent in the chain e.g. kXXX
 | |
| //     methods do not handle nil.
 | |
| //   - Fastpath methods also do not handle nil.
 | |
| //     The switch called in (en|de)code(...) handles it so the dependent calls don't have to.
 | |
| //   - codecgen will handle nil before calling into the library for further work also.
 | |
| //
 | |
| // ------------------------------------------
 | |
| // Passing reflect.Kind to functions that take a reflect.Value
 | |
| //   - Note that reflect.Value.Kind() is very cheap, as its fundamentally a binary AND of 2 numbers
 | |
| //
 | |
| // ------------------------------------------
 | |
| // Transient values during decoding
 | |
| //
 | |
| // With reflection, the stack is not used. Consequently, values which may be stack-allocated in
 | |
| // normal use will cause a heap allocation when using reflection.
 | |
| //
 | |
| // There are cases where we know that a value is transient, and we just need to decode into it
 | |
| // temporarily so we can right away use its value for something else.
 | |
| //
 | |
| // In these situations, we can elide the heap allocation by being deliberate with use of a pre-cached
 | |
| // scratch memory or scratch value.
 | |
| //
 | |
| // We use this for situations:
 | |
| // - decode into a temp value x, and then set x into an interface
 | |
| // - decode into a temp value, for use as a map key, to lookup up a map value
 | |
| // - decode into a temp value, for use as a map value, to set into a map
 | |
| // - decode into a temp value, for sending into a channel
 | |
| //
 | |
| // By definition, Transient values are NEVER pointer-shaped values,
 | |
| // like pointer, func, map, chan. Using transient for pointer-shaped values
 | |
| // can lead to data corruption when GC tries to follow what it saw as a pointer at one point.
 | |
| //
 | |
| // In general, transient values are values which can be decoded as an atomic value
 | |
| // using a single call to the decDriver. This naturally includes bool or numeric types.
 | |
| //
 | |
| // Note that some values which "contain" pointers, specifically string and slice,
 | |
| // can also be transient. In the case of string, it is decoded as an atomic value.
 | |
| // In the case of a slice, decoding into its elements always uses an addressable
 | |
| // value in memory ie we grow the slice, and then decode directly into the memory
 | |
| // address corresponding to that index in the slice.
 | |
| //
 | |
| // To handle these string and slice values, we have to use a scratch value
 | |
| // which has the same shape of a string or slice.
 | |
| //
 | |
| // Consequently, the full range of types which can be transient is:
 | |
| // - numbers
 | |
| // - bool
 | |
| // - string
 | |
| // - slice
 | |
| //
 | |
| // and whbut we MUST use a scratch space with that element
 | |
| // being defined as an unsafe.Pointer to start with.
 | |
| //
 | |
| // We have to be careful with maps. Because we iterate map keys and values during a range,
 | |
| // we must have 2 variants of the scratch space/value for maps and keys separately.
 | |
| //
 | |
| // These are the TransientAddrK and TransientAddr2K methods of decPerType.
 | |
| 
 | |
| import (
 | |
| 	"encoding"
 | |
| 	"encoding/binary"
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"io"
 | |
| 	"math"
 | |
| 	"reflect"
 | |
| 	"runtime"
 | |
| 	"sort"
 | |
| 	"strconv"
 | |
| 	"strings"
 | |
| 	"sync"
 | |
| 	"sync/atomic"
 | |
| 	"time"
 | |
| 	"unicode/utf8"
 | |
| )
 | |
| 
 | |
| // if debugging is true, then
 | |
| //   - within Encode/Decode, do not recover from panic's
 | |
| //   - etc
 | |
| //
 | |
| // Note: Negative tests that check for errors will fail, so only use this
 | |
| // when debugging, and run only one test at a time preferably.
 | |
| //
 | |
| // Note: RPC tests depend on getting the error from an Encode/Decode call.
 | |
| // Consequently, they will always fail if debugging = true.
 | |
| const debugging = false
 | |
| 
 | |
| const (
 | |
| 	// containerLenUnknown is length returned from Read(Map|Array)Len
 | |
| 	// when a format doesn't know apiori.
 | |
| 	// For example, json doesn't pre-determine the length of a container (sequence/map).
 | |
| 	containerLenUnknown = -1
 | |
| 
 | |
| 	// containerLenNil is length returned from Read(Map|Array)Len
 | |
| 	// when a 'nil' was encountered in the stream.
 | |
| 	containerLenNil = math.MinInt32
 | |
| 
 | |
| 	// [N]byte is handled by converting to []byte first,
 | |
| 	// and sending to the dedicated fast-path function for []byte.
 | |
| 	//
 | |
| 	// Code exists in case our understanding is wrong.
 | |
| 	// keep the defensive code behind this flag, so we can remove/hide it if needed.
 | |
| 	// For now, we enable the defensive code (ie set it to true).
 | |
| 	handleBytesWithinKArray = true
 | |
| 
 | |
| 	// Support encoding.(Binary|Text)(Unm|M)arshaler.
 | |
| 	// This constant flag will enable or disable it.
 | |
| 	supportMarshalInterfaces = true
 | |
| 
 | |
| 	// bytesFreeListNoCache is used for debugging, when we want to skip using a cache of []byte.
 | |
| 	bytesFreeListNoCache = false
 | |
| 
 | |
| 	// size of the cacheline: defaulting to value for archs: amd64, arm64, 386
 | |
| 	// should use "runtime/internal/sys".CacheLineSize, but that is not exposed.
 | |
| 	cacheLineSize = 64
 | |
| 
 | |
| 	wordSizeBits = 32 << (^uint(0) >> 63) // strconv.IntSize
 | |
| 	wordSize     = wordSizeBits / 8
 | |
| 
 | |
| 	// MARKER: determines whether to skip calling fastpath(En|De)codeTypeSwitch.
 | |
| 	// Calling the fastpath switch in encode() or decode() could be redundant,
 | |
| 	// as we still have to introspect it again within fnLoad
 | |
| 	// to determine the function to use for values of that type.
 | |
| 	skipFastpathTypeSwitchInDirectCall = false
 | |
| )
 | |
| 
 | |
| const cpu32Bit = ^uint(0)>>32 == 0
 | |
| 
 | |
| type rkind byte
 | |
| 
 | |
| const (
 | |
| 	rkindPtr    = rkind(reflect.Ptr)
 | |
| 	rkindString = rkind(reflect.String)
 | |
| 	rkindChan   = rkind(reflect.Chan)
 | |
| )
 | |
| 
 | |
| type mapKeyFastKind uint8
 | |
| 
 | |
| const (
 | |
| 	mapKeyFastKind32 = iota + 1
 | |
| 	mapKeyFastKind32ptr
 | |
| 	mapKeyFastKind64
 | |
| 	mapKeyFastKind64ptr
 | |
| 	mapKeyFastKindStr
 | |
| )
 | |
| 
 | |
| var (
 | |
| 	// use a global mutex to ensure each Handle is initialized.
 | |
| 	// We do this, so we don't have to store the basicHandle mutex
 | |
| 	// directly in BasicHandle, so it can be shallow-copied.
 | |
| 	handleInitMu sync.Mutex
 | |
| 
 | |
| 	must mustHdl
 | |
| 	halt panicHdl
 | |
| 
 | |
| 	digitCharBitset      bitset256
 | |
| 	numCharBitset        bitset256
 | |
| 	whitespaceCharBitset bitset256
 | |
| 	asciiAlphaNumBitset  bitset256
 | |
| 
 | |
| 	// numCharWithExpBitset64 bitset64
 | |
| 	// numCharNoExpBitset64   bitset64
 | |
| 	// whitespaceCharBitset64 bitset64
 | |
| 	//
 | |
| 	// // hasptrBitset sets bit for all kinds which always have internal pointers
 | |
| 	// hasptrBitset bitset32
 | |
| 
 | |
| 	// refBitset sets bit for all kinds which are direct internal references
 | |
| 	refBitset bitset32
 | |
| 
 | |
| 	// isnilBitset sets bit for all kinds which can be compared to nil
 | |
| 	isnilBitset bitset32
 | |
| 
 | |
| 	// numBoolBitset sets bit for all number and bool kinds
 | |
| 	numBoolBitset bitset32
 | |
| 
 | |
| 	// numBoolStrSliceBitset sets bits for all kinds which are numbers, bool, strings and slices
 | |
| 	numBoolStrSliceBitset bitset32
 | |
| 
 | |
| 	// scalarBitset sets bit for all kinds which are scalars/primitives and thus immutable
 | |
| 	scalarBitset bitset32
 | |
| 
 | |
| 	mapKeyFastKindVals [32]mapKeyFastKind
 | |
| 
 | |
| 	// codecgen is set to true by codecgen, so that tests, etc can use this information as needed.
 | |
| 	codecgen bool
 | |
| 
 | |
| 	oneByteArr    [1]byte
 | |
| 	zeroByteSlice = oneByteArr[:0:0]
 | |
| 
 | |
| 	eofReader devNullReader
 | |
| )
 | |
| 
 | |
| var (
 | |
| 	errMapTypeNotMapKind     = errors.New("MapType MUST be of Map Kind")
 | |
| 	errSliceTypeNotSliceKind = errors.New("SliceType MUST be of Slice Kind")
 | |
| 
 | |
| 	errExtFnWriteExtUnsupported   = errors.New("BytesExt.WriteExt is not supported")
 | |
| 	errExtFnReadExtUnsupported    = errors.New("BytesExt.ReadExt is not supported")
 | |
| 	errExtFnConvertExtUnsupported = errors.New("InterfaceExt.ConvertExt is not supported")
 | |
| 	errExtFnUpdateExtUnsupported  = errors.New("InterfaceExt.UpdateExt is not supported")
 | |
| 
 | |
| 	errPanicUndefined = errors.New("panic: undefined error")
 | |
| 
 | |
| 	errHandleInited = errors.New("cannot modify initialized Handle")
 | |
| 
 | |
| 	errNoFormatHandle = errors.New("no handle (cannot identify format)")
 | |
| )
 | |
| 
 | |
| var pool4tiload = sync.Pool{
 | |
| 	New: func() interface{} {
 | |
| 		return &typeInfoLoad{
 | |
| 			etypes:   make([]uintptr, 0, 4),
 | |
| 			sfis:     make([]structFieldInfo, 0, 4),
 | |
| 			sfiNames: make(map[string]uint16, 4),
 | |
| 		}
 | |
| 	},
 | |
| }
 | |
| 
 | |
| func init() {
 | |
| 	xx := func(f mapKeyFastKind, k ...reflect.Kind) {
 | |
| 		for _, v := range k {
 | |
| 			mapKeyFastKindVals[byte(v)&31] = f // 'v % 32' equal to 'v & 31'
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	var f mapKeyFastKind
 | |
| 
 | |
| 	f = mapKeyFastKind64
 | |
| 	if wordSizeBits == 32 {
 | |
| 		f = mapKeyFastKind32
 | |
| 	}
 | |
| 	xx(f, reflect.Int, reflect.Uint, reflect.Uintptr)
 | |
| 
 | |
| 	f = mapKeyFastKind64ptr
 | |
| 	if wordSizeBits == 32 {
 | |
| 		f = mapKeyFastKind32ptr
 | |
| 	}
 | |
| 	xx(f, reflect.Ptr)
 | |
| 
 | |
| 	xx(mapKeyFastKindStr, reflect.String)
 | |
| 	xx(mapKeyFastKind32, reflect.Uint32, reflect.Int32, reflect.Float32)
 | |
| 	xx(mapKeyFastKind64, reflect.Uint64, reflect.Int64, reflect.Float64)
 | |
| 
 | |
| 	numBoolBitset.
 | |
| 		set(byte(reflect.Bool)).
 | |
| 		set(byte(reflect.Int)).
 | |
| 		set(byte(reflect.Int8)).
 | |
| 		set(byte(reflect.Int16)).
 | |
| 		set(byte(reflect.Int32)).
 | |
| 		set(byte(reflect.Int64)).
 | |
| 		set(byte(reflect.Uint)).
 | |
| 		set(byte(reflect.Uint8)).
 | |
| 		set(byte(reflect.Uint16)).
 | |
| 		set(byte(reflect.Uint32)).
 | |
| 		set(byte(reflect.Uint64)).
 | |
| 		set(byte(reflect.Uintptr)).
 | |
| 		set(byte(reflect.Float32)).
 | |
| 		set(byte(reflect.Float64)).
 | |
| 		set(byte(reflect.Complex64)).
 | |
| 		set(byte(reflect.Complex128))
 | |
| 
 | |
| 	numBoolStrSliceBitset = numBoolBitset
 | |
| 
 | |
| 	numBoolStrSliceBitset.
 | |
| 		set(byte(reflect.String)).
 | |
| 		set(byte(reflect.Slice))
 | |
| 
 | |
| 	scalarBitset = numBoolBitset
 | |
| 
 | |
| 	scalarBitset.
 | |
| 		set(byte(reflect.String))
 | |
| 
 | |
| 	// MARKER: reflect.Array is not a scalar, as its contents can be modified.
 | |
| 
 | |
| 	refBitset.
 | |
| 		set(byte(reflect.Map)).
 | |
| 		set(byte(reflect.Ptr)).
 | |
| 		set(byte(reflect.Func)).
 | |
| 		set(byte(reflect.Chan)).
 | |
| 		set(byte(reflect.UnsafePointer))
 | |
| 
 | |
| 	isnilBitset = refBitset
 | |
| 
 | |
| 	isnilBitset.
 | |
| 		set(byte(reflect.Interface)).
 | |
| 		set(byte(reflect.Slice))
 | |
| 
 | |
| 	// hasptrBitset = isnilBitset
 | |
| 	//
 | |
| 	// hasptrBitset.
 | |
| 	// 	set(byte(reflect.String))
 | |
| 
 | |
| 	for i := byte(0); i <= utf8.RuneSelf; i++ {
 | |
| 		if (i >= '0' && i <= '9') || (i >= 'a' && i <= 'z') || (i >= 'A' && i <= 'Z') {
 | |
| 			asciiAlphaNumBitset.set(i)
 | |
| 		}
 | |
| 		switch i {
 | |
| 		case ' ', '\t', '\r', '\n':
 | |
| 			whitespaceCharBitset.set(i)
 | |
| 		case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
 | |
| 			digitCharBitset.set(i)
 | |
| 			numCharBitset.set(i)
 | |
| 		case '.', '+', '-':
 | |
| 			numCharBitset.set(i)
 | |
| 		case 'e', 'E':
 | |
| 			numCharBitset.set(i)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // driverStateManager supports the runtime state of an (enc|dec)Driver.
 | |
| //
 | |
| // During a side(En|De)code call, we can capture the state, reset it,
 | |
| // and then restore it later to continue the primary encoding/decoding.
 | |
| type driverStateManager interface {
 | |
| 	resetState()
 | |
| 	captureState() interface{}
 | |
| 	restoreState(state interface{})
 | |
| }
 | |
| 
 | |
| type bdAndBdread struct {
 | |
| 	bdRead bool
 | |
| 	bd     byte
 | |
| }
 | |
| 
 | |
| func (x bdAndBdread) captureState() interface{}   { return x }
 | |
| func (x *bdAndBdread) resetState()                { x.bd, x.bdRead = 0, false }
 | |
| func (x *bdAndBdread) reset()                     { x.resetState() }
 | |
| func (x *bdAndBdread) restoreState(v interface{}) { *x = v.(bdAndBdread) }
 | |
| 
 | |
| type clsErr struct {
 | |
| 	err    error // error on closing
 | |
| 	closed bool  // is it closed?
 | |
| }
 | |
| 
 | |
| type charEncoding uint8
 | |
| 
 | |
| const (
 | |
| 	_ charEncoding = iota // make 0 unset
 | |
| 	cUTF8
 | |
| 	cUTF16LE
 | |
| 	cUTF16BE
 | |
| 	cUTF32LE
 | |
| 	cUTF32BE
 | |
| 	// Deprecated: not a true char encoding value
 | |
| 	cRAW charEncoding = 255
 | |
| )
 | |
| 
 | |
| // valueType is the stream type
 | |
| type valueType uint8
 | |
| 
 | |
| const (
 | |
| 	valueTypeUnset valueType = iota
 | |
| 	valueTypeNil
 | |
| 	valueTypeInt
 | |
| 	valueTypeUint
 | |
| 	valueTypeFloat
 | |
| 	valueTypeBool
 | |
| 	valueTypeString
 | |
| 	valueTypeSymbol
 | |
| 	valueTypeBytes
 | |
| 	valueTypeMap
 | |
| 	valueTypeArray
 | |
| 	valueTypeTime
 | |
| 	valueTypeExt
 | |
| 
 | |
| 	// valueTypeInvalid = 0xff
 | |
| )
 | |
| 
 | |
| var valueTypeStrings = [...]string{
 | |
| 	"Unset",
 | |
| 	"Nil",
 | |
| 	"Int",
 | |
| 	"Uint",
 | |
| 	"Float",
 | |
| 	"Bool",
 | |
| 	"String",
 | |
| 	"Symbol",
 | |
| 	"Bytes",
 | |
| 	"Map",
 | |
| 	"Array",
 | |
| 	"Timestamp",
 | |
| 	"Ext",
 | |
| }
 | |
| 
 | |
| func (x valueType) String() string {
 | |
| 	if int(x) < len(valueTypeStrings) {
 | |
| 		return valueTypeStrings[x]
 | |
| 	}
 | |
| 	return strconv.FormatInt(int64(x), 10)
 | |
| }
 | |
| 
 | |
| // note that containerMapStart and containerArraySend are not sent.
 | |
| // This is because the ReadXXXStart and EncodeXXXStart already does these.
 | |
| type containerState uint8
 | |
| 
 | |
| const (
 | |
| 	_ containerState = iota
 | |
| 
 | |
| 	containerMapStart
 | |
| 	containerMapKey
 | |
| 	containerMapValue
 | |
| 	containerMapEnd
 | |
| 	containerArrayStart
 | |
| 	containerArrayElem
 | |
| 	containerArrayEnd
 | |
| )
 | |
| 
 | |
| // do not recurse if a containing type refers to an embedded type
 | |
| // which refers back to its containing type (via a pointer).
 | |
| // The second time this back-reference happens, break out,
 | |
| // so as not to cause an infinite loop.
 | |
| const rgetMaxRecursion = 2
 | |
| 
 | |
| // fauxUnion is used to keep track of the primitives decoded.
 | |
| //
 | |
| // Without it, we would have to decode each primitive and wrap it
 | |
| // in an interface{}, causing an allocation.
 | |
| // In this model, the primitives are decoded in a "pseudo-atomic" fashion,
 | |
| // so we can rest assured that no other decoding happens while these
 | |
| // primitives are being decoded.
 | |
| //
 | |
| // maps and arrays are not handled by this mechanism.
 | |
| type fauxUnion struct {
 | |
| 	// r RawExt // used for RawExt, uint, []byte.
 | |
| 
 | |
| 	// primitives below
 | |
| 	u uint64
 | |
| 	i int64
 | |
| 	f float64
 | |
| 	l []byte
 | |
| 	s string
 | |
| 
 | |
| 	// ---- cpu cache line boundary?
 | |
| 	t time.Time
 | |
| 	b bool
 | |
| 
 | |
| 	// state
 | |
| 	v valueType
 | |
| }
 | |
| 
 | |
| // typeInfoLoad is a transient object used while loading up a typeInfo.
 | |
| type typeInfoLoad struct {
 | |
| 	etypes   []uintptr
 | |
| 	sfis     []structFieldInfo
 | |
| 	sfiNames map[string]uint16
 | |
| }
 | |
| 
 | |
| func (x *typeInfoLoad) reset() {
 | |
| 	x.etypes = x.etypes[:0]
 | |
| 	x.sfis = x.sfis[:0]
 | |
| 	for k := range x.sfiNames { // optimized to zero the map
 | |
| 		delete(x.sfiNames, k)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // mirror json.Marshaler and json.Unmarshaler here,
 | |
| // so we don't import the encoding/json package
 | |
| 
 | |
| type jsonMarshaler interface {
 | |
| 	MarshalJSON() ([]byte, error)
 | |
| }
 | |
| type jsonUnmarshaler interface {
 | |
| 	UnmarshalJSON([]byte) error
 | |
| }
 | |
| 
 | |
| type isZeroer interface {
 | |
| 	IsZero() bool
 | |
| }
 | |
| 
 | |
| type isCodecEmptyer interface {
 | |
| 	IsCodecEmpty() bool
 | |
| }
 | |
| 
 | |
| type codecError struct {
 | |
| 	err    error
 | |
| 	name   string
 | |
| 	pos    int
 | |
| 	encode bool
 | |
| }
 | |
| 
 | |
| func (e *codecError) Cause() error {
 | |
| 	return e.err
 | |
| }
 | |
| 
 | |
| func (e *codecError) Unwrap() error {
 | |
| 	return e.err
 | |
| }
 | |
| 
 | |
| func (e *codecError) Error() string {
 | |
| 	if e.encode {
 | |
| 		return fmt.Sprintf("%s encode error: %v", e.name, e.err)
 | |
| 	}
 | |
| 	return fmt.Sprintf("%s decode error [pos %d]: %v", e.name, e.pos, e.err)
 | |
| }
 | |
| 
 | |
| func wrapCodecErr(in error, name string, numbytesread int, encode bool) (out error) {
 | |
| 	x, ok := in.(*codecError)
 | |
| 	if ok && x.pos == numbytesread && x.name == name && x.encode == encode {
 | |
| 		return in
 | |
| 	}
 | |
| 	return &codecError{in, name, numbytesread, encode}
 | |
| }
 | |
| 
 | |
| var (
 | |
| 	bigen bigenHelper
 | |
| 
 | |
| 	bigenstd = binary.BigEndian
 | |
| 
 | |
| 	structInfoFieldName = "_struct"
 | |
| 
 | |
| 	mapStrIntfTyp  = reflect.TypeOf(map[string]interface{}(nil))
 | |
| 	mapIntfIntfTyp = reflect.TypeOf(map[interface{}]interface{}(nil))
 | |
| 	intfSliceTyp   = reflect.TypeOf([]interface{}(nil))
 | |
| 	intfTyp        = intfSliceTyp.Elem()
 | |
| 
 | |
| 	reflectValTyp = reflect.TypeOf((*reflect.Value)(nil)).Elem()
 | |
| 
 | |
| 	stringTyp     = reflect.TypeOf("")
 | |
| 	timeTyp       = reflect.TypeOf(time.Time{})
 | |
| 	rawExtTyp     = reflect.TypeOf(RawExt{})
 | |
| 	rawTyp        = reflect.TypeOf(Raw{})
 | |
| 	uintptrTyp    = reflect.TypeOf(uintptr(0))
 | |
| 	uint8Typ      = reflect.TypeOf(uint8(0))
 | |
| 	uint8SliceTyp = reflect.TypeOf([]uint8(nil))
 | |
| 	uintTyp       = reflect.TypeOf(uint(0))
 | |
| 	intTyp        = reflect.TypeOf(int(0))
 | |
| 
 | |
| 	mapBySliceTyp = reflect.TypeOf((*MapBySlice)(nil)).Elem()
 | |
| 
 | |
| 	binaryMarshalerTyp   = reflect.TypeOf((*encoding.BinaryMarshaler)(nil)).Elem()
 | |
| 	binaryUnmarshalerTyp = reflect.TypeOf((*encoding.BinaryUnmarshaler)(nil)).Elem()
 | |
| 
 | |
| 	textMarshalerTyp   = reflect.TypeOf((*encoding.TextMarshaler)(nil)).Elem()
 | |
| 	textUnmarshalerTyp = reflect.TypeOf((*encoding.TextUnmarshaler)(nil)).Elem()
 | |
| 
 | |
| 	jsonMarshalerTyp   = reflect.TypeOf((*jsonMarshaler)(nil)).Elem()
 | |
| 	jsonUnmarshalerTyp = reflect.TypeOf((*jsonUnmarshaler)(nil)).Elem()
 | |
| 
 | |
| 	selferTyp                = reflect.TypeOf((*Selfer)(nil)).Elem()
 | |
| 	missingFielderTyp        = reflect.TypeOf((*MissingFielder)(nil)).Elem()
 | |
| 	iszeroTyp                = reflect.TypeOf((*isZeroer)(nil)).Elem()
 | |
| 	isCodecEmptyerTyp        = reflect.TypeOf((*isCodecEmptyer)(nil)).Elem()
 | |
| 	isSelferViaCodecgenerTyp = reflect.TypeOf((*isSelferViaCodecgener)(nil)).Elem()
 | |
| 
 | |
| 	uint8TypId      = rt2id(uint8Typ)
 | |
| 	uint8SliceTypId = rt2id(uint8SliceTyp)
 | |
| 	rawExtTypId     = rt2id(rawExtTyp)
 | |
| 	rawTypId        = rt2id(rawTyp)
 | |
| 	intfTypId       = rt2id(intfTyp)
 | |
| 	timeTypId       = rt2id(timeTyp)
 | |
| 	stringTypId     = rt2id(stringTyp)
 | |
| 
 | |
| 	mapStrIntfTypId  = rt2id(mapStrIntfTyp)
 | |
| 	mapIntfIntfTypId = rt2id(mapIntfIntfTyp)
 | |
| 	intfSliceTypId   = rt2id(intfSliceTyp)
 | |
| 	// mapBySliceTypId  = rt2id(mapBySliceTyp)
 | |
| 
 | |
| 	intBitsize  = uint8(intTyp.Bits())
 | |
| 	uintBitsize = uint8(uintTyp.Bits())
 | |
| 
 | |
| 	// bsAll0x00 = []byte{0, 0, 0, 0, 0, 0, 0, 0}
 | |
| 	bsAll0xff = []byte{0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
 | |
| 
 | |
| 	chkOvf checkOverflow
 | |
| )
 | |
| 
 | |
| var defTypeInfos = NewTypeInfos([]string{"codec", "json"})
 | |
| 
 | |
| // SelfExt is a sentinel extension signifying that types
 | |
| // registered with it SHOULD be encoded and decoded
 | |
| // based on the native mode of the format.
 | |
| //
 | |
| // This allows users to define a tag for an extension,
 | |
| // but signify that the types should be encoded/decoded as the native encoding.
 | |
| // This way, users need not also define how to encode or decode the extension.
 | |
| var SelfExt = &extFailWrapper{}
 | |
| 
 | |
| // Selfer defines methods by which a value can encode or decode itself.
 | |
| //
 | |
| // Any type which implements Selfer will be able to encode or decode itself.
 | |
| // Consequently, during (en|de)code, this takes precedence over
 | |
| // (text|binary)(M|Unm)arshal or extension support.
 | |
| //
 | |
| // By definition, it is not allowed for a Selfer to directly call Encode or Decode on itself.
 | |
| // If that is done, Encode/Decode will rightfully fail with a Stack Overflow style error.
 | |
| // For example, the snippet below will cause such an error.
 | |
| //
 | |
| //	type testSelferRecur struct{}
 | |
| //	func (s *testSelferRecur) CodecEncodeSelf(e *Encoder) { e.MustEncode(s) }
 | |
| //	func (s *testSelferRecur) CodecDecodeSelf(d *Decoder) { d.MustDecode(s) }
 | |
| //
 | |
| // Note: *the first set of bytes of any value MUST NOT represent nil in the format*.
 | |
| // This is because, during each decode, we first check the the next set of bytes
 | |
| // represent nil, and if so, we just set the value to nil.
 | |
| type Selfer interface {
 | |
| 	CodecEncodeSelf(*Encoder)
 | |
| 	CodecDecodeSelf(*Decoder)
 | |
| }
 | |
| 
 | |
| type isSelferViaCodecgener interface {
 | |
| 	codecSelferViaCodecgen()
 | |
| }
 | |
| 
 | |
| // MissingFielder defines the interface allowing structs to internally decode or encode
 | |
| // values which do not map to struct fields.
 | |
| //
 | |
| // We expect that this interface is bound to a pointer type (so the mutation function works).
 | |
| //
 | |
| // A use-case is if a version of a type unexports a field, but you want compatibility between
 | |
| // both versions during encoding and decoding.
 | |
| //
 | |
| // Note that the interface is completely ignored during codecgen.
 | |
| type MissingFielder interface {
 | |
| 	// CodecMissingField is called to set a missing field and value pair.
 | |
| 	//
 | |
| 	// It returns true if the missing field was set on the struct.
 | |
| 	CodecMissingField(field []byte, value interface{}) bool
 | |
| 
 | |
| 	// CodecMissingFields returns the set of fields which are not struct fields.
 | |
| 	//
 | |
| 	// Note that the returned map may be mutated by the caller.
 | |
| 	CodecMissingFields() map[string]interface{}
 | |
| }
 | |
| 
 | |
| // MapBySlice is a tag interface that denotes the slice or array value should encode as a map
 | |
| // in the stream, and can be decoded from a map in the stream.
 | |
| //
 | |
| // The slice or array must contain a sequence of key-value pairs.
 | |
| // The length of the slice or array must be even (fully divisible by 2).
 | |
| //
 | |
| // This affords storing a map in a specific sequence in the stream.
 | |
| //
 | |
| // Example usage:
 | |
| //
 | |
| //	type T1 []string         // or []int or []Point or any other "slice" type
 | |
| //	func (_ T1) MapBySlice{} // T1 now implements MapBySlice, and will be encoded as a map
 | |
| //	type T2 struct { KeyValues T1 }
 | |
| //
 | |
| //	var kvs = []string{"one", "1", "two", "2", "three", "3"}
 | |
| //	var v2 = T2{ KeyValues: T1(kvs) }
 | |
| //	// v2 will be encoded like the map: {"KeyValues": {"one": "1", "two": "2", "three": "3"} }
 | |
| //
 | |
| // The support of MapBySlice affords the following:
 | |
| //   - A slice or array type which implements MapBySlice will be encoded as a map
 | |
| //   - A slice can be decoded from a map in the stream
 | |
| type MapBySlice interface {
 | |
| 	MapBySlice()
 | |
| }
 | |
| 
 | |
| // basicHandleRuntimeState holds onto all BasicHandle runtime and cached config information.
 | |
| //
 | |
| // Storing this outside BasicHandle allows us create shallow copies of a Handle,
 | |
| // which can be used e.g. when we need to modify config fields temporarily.
 | |
| // Shallow copies are used within tests, so we can modify some config fields for a test
 | |
| // temporarily when running tests in parallel, without running the risk that a test executing
 | |
| // in parallel with other tests does not see a transient modified values not meant for it.
 | |
| type basicHandleRuntimeState struct {
 | |
| 	// these are used during runtime.
 | |
| 	// At init time, they should have nothing in them.
 | |
| 	rtidFns      atomicRtidFnSlice
 | |
| 	rtidFnsNoExt atomicRtidFnSlice
 | |
| 
 | |
| 	// Note: basicHandleRuntimeState is not comparable, due to these slices here (extHandle, intf2impls).
 | |
| 	// If *[]T is used instead, this becomes comparable, at the cost of extra indirection.
 | |
| 	// Thses slices are used all the time, so keep as slices (not pointers).
 | |
| 
 | |
| 	extHandle
 | |
| 
 | |
| 	intf2impls
 | |
| 
 | |
| 	mu sync.Mutex
 | |
| 
 | |
| 	jsonHandle   bool
 | |
| 	binaryHandle bool
 | |
| 
 | |
| 	// timeBuiltin is initialized from TimeNotBuiltin, and used internally.
 | |
| 	// once initialized, it cannot be changed, as the function for encoding/decoding time.Time
 | |
| 	// will have been cached and the TimeNotBuiltin value will not be consulted thereafter.
 | |
| 	timeBuiltin bool
 | |
| 	_           bool // padding
 | |
| }
 | |
| 
 | |
| // BasicHandle encapsulates the common options and extension functions.
 | |
| //
 | |
| // Deprecated: DO NOT USE DIRECTLY. EXPORTED FOR GODOC BENEFIT. WILL BE REMOVED.
 | |
| type BasicHandle struct {
 | |
| 	// BasicHandle is always a part of a different type.
 | |
| 	// It doesn't have to fit into it own cache lines.
 | |
| 
 | |
| 	// TypeInfos is used to get the type info for any type.
 | |
| 	//
 | |
| 	// If not configured, the default TypeInfos is used, which uses struct tag keys: codec, json
 | |
| 	TypeInfos *TypeInfos
 | |
| 
 | |
| 	*basicHandleRuntimeState
 | |
| 
 | |
| 	// ---- cache line
 | |
| 
 | |
| 	DecodeOptions
 | |
| 
 | |
| 	// ---- cache line
 | |
| 
 | |
| 	EncodeOptions
 | |
| 
 | |
| 	RPCOptions
 | |
| 
 | |
| 	// TimeNotBuiltin configures whether time.Time should be treated as a builtin type.
 | |
| 	//
 | |
| 	// All Handlers should know how to encode/decode time.Time as part of the core
 | |
| 	// format specification, or as a standard extension defined by the format.
 | |
| 	//
 | |
| 	// However, users can elect to handle time.Time as a custom extension, or via the
 | |
| 	// standard library's encoding.Binary(M|Unm)arshaler or Text(M|Unm)arshaler interface.
 | |
| 	// To elect this behavior, users can set TimeNotBuiltin=true.
 | |
| 	//
 | |
| 	// Note: Setting TimeNotBuiltin=true can be used to enable the legacy behavior
 | |
| 	// (for Cbor and Msgpack), where time.Time was not a builtin supported type.
 | |
| 	//
 | |
| 	// Note: DO NOT CHANGE AFTER FIRST USE.
 | |
| 	//
 | |
| 	// Once a Handle has been initialized (used), do not modify this option. It will be ignored.
 | |
| 	TimeNotBuiltin bool
 | |
| 
 | |
| 	// ExplicitRelease is ignored and has no effect.
 | |
| 	//
 | |
| 	// Deprecated: Pools are only used for long-lived objects shared across goroutines.
 | |
| 	// It is maintained for backward compatibility.
 | |
| 	ExplicitRelease bool
 | |
| 
 | |
| 	// ---- cache line
 | |
| 	inited uint32 // holds if inited, and also handle flags (binary encoding, json handler, etc)
 | |
| 
 | |
| }
 | |
| 
 | |
| // initHandle does a one-time initialization of the handle.
 | |
| // After this is run, do not modify the Handle, as some modifications are ignored
 | |
| // e.g. extensions, registered interfaces, TimeNotBuiltIn, etc
 | |
| func initHandle(hh Handle) {
 | |
| 	x := hh.getBasicHandle()
 | |
| 
 | |
| 	// MARKER: We need to simulate once.Do, to ensure no data race within the block.
 | |
| 	// Consequently, below would not work.
 | |
| 	//
 | |
| 	// if atomic.CompareAndSwapUint32(&x.inited, 0, 1) {
 | |
| 	// 	x.be = hh.isBinary()
 | |
| 	// 	x.js = hh.isJson
 | |
| 	// 	x.n = hh.Name()[0]
 | |
| 	// }
 | |
| 
 | |
| 	// simulate once.Do using our own stored flag and mutex as a CompareAndSwap
 | |
| 	// is not sufficient, since a race condition can occur within init(Handle) function.
 | |
| 	// init is made noinline, so that this function can be inlined by its caller.
 | |
| 	if atomic.LoadUint32(&x.inited) == 0 {
 | |
| 		x.initHandle(hh)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (x *BasicHandle) basicInit() {
 | |
| 	x.rtidFns.store(nil)
 | |
| 	x.rtidFnsNoExt.store(nil)
 | |
| 	x.timeBuiltin = !x.TimeNotBuiltin
 | |
| }
 | |
| 
 | |
| func (x *BasicHandle) init() {}
 | |
| 
 | |
| func (x *BasicHandle) isInited() bool {
 | |
| 	return atomic.LoadUint32(&x.inited) != 0
 | |
| }
 | |
| 
 | |
| // clearInited: DANGEROUS - only use in testing, etc
 | |
| func (x *BasicHandle) clearInited() {
 | |
| 	atomic.StoreUint32(&x.inited, 0)
 | |
| }
 | |
| 
 | |
| // TimeBuiltin returns whether time.Time OOTB support is used,
 | |
| // based on the initial configuration of TimeNotBuiltin
 | |
| func (x *basicHandleRuntimeState) TimeBuiltin() bool {
 | |
| 	return x.timeBuiltin
 | |
| }
 | |
| 
 | |
| func (x *basicHandleRuntimeState) isJs() bool {
 | |
| 	return x.jsonHandle
 | |
| }
 | |
| 
 | |
| func (x *basicHandleRuntimeState) isBe() bool {
 | |
| 	return x.binaryHandle
 | |
| }
 | |
| 
 | |
| func (x *basicHandleRuntimeState) setExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
 | |
| 	rk := rt.Kind()
 | |
| 	for rk == reflect.Ptr {
 | |
| 		rt = rt.Elem()
 | |
| 		rk = rt.Kind()
 | |
| 	}
 | |
| 
 | |
| 	if rt.PkgPath() == "" || rk == reflect.Interface { // || rk == reflect.Ptr {
 | |
| 		return fmt.Errorf("codec.Handle.SetExt: Takes named type, not a pointer or interface: %v", rt)
 | |
| 	}
 | |
| 
 | |
| 	rtid := rt2id(rt)
 | |
| 	// handle all natively supported type appropriately, so they cannot have an extension.
 | |
| 	// However, we do not return an error for these, as we do not document that.
 | |
| 	// Instead, we silently treat as a no-op, and return.
 | |
| 	switch rtid {
 | |
| 	case rawTypId, rawExtTypId:
 | |
| 		return
 | |
| 	case timeTypId:
 | |
| 		if x.timeBuiltin {
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	for i := range x.extHandle {
 | |
| 		v := &x.extHandle[i]
 | |
| 		if v.rtid == rtid {
 | |
| 			v.tag, v.ext = tag, ext
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 	rtidptr := rt2id(reflect.PtrTo(rt))
 | |
| 	x.extHandle = append(x.extHandle, extTypeTagFn{rtid, rtidptr, rt, tag, ext})
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // initHandle should be called only from codec.initHandle global function.
 | |
| // make it uninlineable, as it is called at most once for each handle.
 | |
| //
 | |
| //go:noinline
 | |
| func (x *BasicHandle) initHandle(hh Handle) {
 | |
| 	handleInitMu.Lock()
 | |
| 	defer handleInitMu.Unlock() // use defer, as halt may panic below
 | |
| 	if x.inited == 0 {
 | |
| 		if x.basicHandleRuntimeState == nil {
 | |
| 			x.basicHandleRuntimeState = new(basicHandleRuntimeState)
 | |
| 		}
 | |
| 		x.jsonHandle = hh.isJson()
 | |
| 		x.binaryHandle = hh.isBinary()
 | |
| 		// ensure MapType and SliceType are of correct type
 | |
| 		if x.MapType != nil && x.MapType.Kind() != reflect.Map {
 | |
| 			halt.onerror(errMapTypeNotMapKind)
 | |
| 		}
 | |
| 		if x.SliceType != nil && x.SliceType.Kind() != reflect.Slice {
 | |
| 			halt.onerror(errSliceTypeNotSliceKind)
 | |
| 		}
 | |
| 		x.basicInit()
 | |
| 		hh.init()
 | |
| 		atomic.StoreUint32(&x.inited, 1)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (x *BasicHandle) getBasicHandle() *BasicHandle {
 | |
| 	return x
 | |
| }
 | |
| 
 | |
| func (x *BasicHandle) typeInfos() *TypeInfos {
 | |
| 	if x.TypeInfos != nil {
 | |
| 		return x.TypeInfos
 | |
| 	}
 | |
| 	return defTypeInfos
 | |
| }
 | |
| 
 | |
| func (x *BasicHandle) getTypeInfo(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
 | |
| 	return x.typeInfos().get(rtid, rt)
 | |
| }
 | |
| 
 | |
| func findRtidFn(s []codecRtidFn, rtid uintptr) (i uint, fn *codecFn) {
 | |
| 	// binary search. adapted from sort/search.go.
 | |
| 	// Note: we use goto (instead of for loop) so this can be inlined.
 | |
| 
 | |
| 	// h, i, j := 0, 0, len(s)
 | |
| 	var h uint // var h, i uint
 | |
| 	var j = uint(len(s))
 | |
| LOOP:
 | |
| 	if i < j {
 | |
| 		h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2
 | |
| 		if s[h].rtid < rtid {
 | |
| 			i = h + 1
 | |
| 		} else {
 | |
| 			j = h
 | |
| 		}
 | |
| 		goto LOOP
 | |
| 	}
 | |
| 	if i < uint(len(s)) && s[i].rtid == rtid {
 | |
| 		fn = s[i].fn
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (x *BasicHandle) fn(rt reflect.Type) (fn *codecFn) {
 | |
| 	return x.fnVia(rt, x.typeInfos(), &x.rtidFns, x.CheckCircularRef, true)
 | |
| }
 | |
| 
 | |
| func (x *BasicHandle) fnNoExt(rt reflect.Type) (fn *codecFn) {
 | |
| 	return x.fnVia(rt, x.typeInfos(), &x.rtidFnsNoExt, x.CheckCircularRef, false)
 | |
| }
 | |
| 
 | |
| func (x *basicHandleRuntimeState) fnVia(rt reflect.Type, tinfos *TypeInfos, fs *atomicRtidFnSlice, checkCircularRef, checkExt bool) (fn *codecFn) {
 | |
| 	rtid := rt2id(rt)
 | |
| 	sp := fs.load()
 | |
| 	if sp != nil {
 | |
| 		if _, fn = findRtidFn(sp, rtid); fn != nil {
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	fn = x.fnLoad(rt, rtid, tinfos, checkCircularRef, checkExt)
 | |
| 	x.mu.Lock()
 | |
| 	sp = fs.load()
 | |
| 	// since this is an atomic load/store, we MUST use a different array each time,
 | |
| 	// else we have a data race when a store is happening simultaneously with a findRtidFn call.
 | |
| 	if sp == nil {
 | |
| 		sp = []codecRtidFn{{rtid, fn}}
 | |
| 		fs.store(sp)
 | |
| 	} else {
 | |
| 		idx, fn2 := findRtidFn(sp, rtid)
 | |
| 		if fn2 == nil {
 | |
| 			sp2 := make([]codecRtidFn, len(sp)+1)
 | |
| 			copy(sp2[idx+1:], sp[idx:])
 | |
| 			copy(sp2, sp[:idx])
 | |
| 			sp2[idx] = codecRtidFn{rtid, fn}
 | |
| 			fs.store(sp2)
 | |
| 		}
 | |
| 	}
 | |
| 	x.mu.Unlock()
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func fnloadFastpathUnderlying(ti *typeInfo) (f *fastpathE, u reflect.Type) {
 | |
| 	var rtid uintptr
 | |
| 	var idx int
 | |
| 	rtid = rt2id(ti.fastpathUnderlying)
 | |
| 	idx = fastpathAvIndex(rtid)
 | |
| 	if idx == -1 {
 | |
| 		return
 | |
| 	}
 | |
| 	f = &fastpathAv[idx]
 | |
| 	if uint8(reflect.Array) == ti.kind {
 | |
| 		u = reflectArrayOf(ti.rt.Len(), ti.elem)
 | |
| 	} else {
 | |
| 		u = f.rt
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (x *basicHandleRuntimeState) fnLoad(rt reflect.Type, rtid uintptr, tinfos *TypeInfos, checkCircularRef, checkExt bool) (fn *codecFn) {
 | |
| 	fn = new(codecFn)
 | |
| 	fi := &(fn.i)
 | |
| 	ti := tinfos.get(rtid, rt)
 | |
| 	fi.ti = ti
 | |
| 	rk := reflect.Kind(ti.kind)
 | |
| 
 | |
| 	// anything can be an extension except the built-in ones: time, raw and rawext.
 | |
| 	// ensure we check for these types, then if extension, before checking if
 | |
| 	// it implementes one of the pre-declared interfaces.
 | |
| 
 | |
| 	fi.addrDf = true
 | |
| 	// fi.addrEf = true
 | |
| 
 | |
| 	if rtid == timeTypId && x.timeBuiltin {
 | |
| 		fn.fe = (*Encoder).kTime
 | |
| 		fn.fd = (*Decoder).kTime
 | |
| 	} else if rtid == rawTypId {
 | |
| 		fn.fe = (*Encoder).raw
 | |
| 		fn.fd = (*Decoder).raw
 | |
| 	} else if rtid == rawExtTypId {
 | |
| 		fn.fe = (*Encoder).rawExt
 | |
| 		fn.fd = (*Decoder).rawExt
 | |
| 		fi.addrD = true
 | |
| 		fi.addrE = true
 | |
| 	} else if xfFn := x.getExt(rtid, checkExt); xfFn != nil {
 | |
| 		fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
 | |
| 		fn.fe = (*Encoder).ext
 | |
| 		fn.fd = (*Decoder).ext
 | |
| 		fi.addrD = true
 | |
| 		if rk == reflect.Struct || rk == reflect.Array {
 | |
| 			fi.addrE = true
 | |
| 		}
 | |
| 	} else if (ti.flagSelfer || ti.flagSelferPtr) &&
 | |
| 		!(checkCircularRef && ti.flagSelferViaCodecgen && ti.kind == byte(reflect.Struct)) {
 | |
| 		// do not use Selfer generated by codecgen if it is a struct and CheckCircularRef=true
 | |
| 		fn.fe = (*Encoder).selferMarshal
 | |
| 		fn.fd = (*Decoder).selferUnmarshal
 | |
| 		fi.addrD = ti.flagSelferPtr
 | |
| 		fi.addrE = ti.flagSelferPtr
 | |
| 	} else if supportMarshalInterfaces && x.isBe() &&
 | |
| 		(ti.flagBinaryMarshaler || ti.flagBinaryMarshalerPtr) &&
 | |
| 		(ti.flagBinaryUnmarshaler || ti.flagBinaryUnmarshalerPtr) {
 | |
| 		fn.fe = (*Encoder).binaryMarshal
 | |
| 		fn.fd = (*Decoder).binaryUnmarshal
 | |
| 		fi.addrD = ti.flagBinaryUnmarshalerPtr
 | |
| 		fi.addrE = ti.flagBinaryMarshalerPtr
 | |
| 	} else if supportMarshalInterfaces && !x.isBe() && x.isJs() &&
 | |
| 		(ti.flagJsonMarshaler || ti.flagJsonMarshalerPtr) &&
 | |
| 		(ti.flagJsonUnmarshaler || ti.flagJsonUnmarshalerPtr) {
 | |
| 		//If JSON, we should check JSONMarshal before textMarshal
 | |
| 		fn.fe = (*Encoder).jsonMarshal
 | |
| 		fn.fd = (*Decoder).jsonUnmarshal
 | |
| 		fi.addrD = ti.flagJsonUnmarshalerPtr
 | |
| 		fi.addrE = ti.flagJsonMarshalerPtr
 | |
| 	} else if supportMarshalInterfaces && !x.isBe() &&
 | |
| 		(ti.flagTextMarshaler || ti.flagTextMarshalerPtr) &&
 | |
| 		(ti.flagTextUnmarshaler || ti.flagTextUnmarshalerPtr) {
 | |
| 		fn.fe = (*Encoder).textMarshal
 | |
| 		fn.fd = (*Decoder).textUnmarshal
 | |
| 		fi.addrD = ti.flagTextUnmarshalerPtr
 | |
| 		fi.addrE = ti.flagTextMarshalerPtr
 | |
| 	} else {
 | |
| 		if fastpathEnabled && (rk == reflect.Map || rk == reflect.Slice || rk == reflect.Array) {
 | |
| 			// by default (without using unsafe),
 | |
| 			// if an array is not addressable, converting from an array to a slice
 | |
| 			// requires an allocation (see helper_not_unsafe.go: func rvGetSlice4Array).
 | |
| 			//
 | |
| 			// (Non-addressable arrays mostly occur as keys/values from a map).
 | |
| 			//
 | |
| 			// However, fastpath functions are mostly for slices of numbers or strings,
 | |
| 			// which are small by definition and thus allocation should be fast/cheap in time.
 | |
| 			//
 | |
| 			// Consequently, the value of doing this quick allocation to elide the overhead cost of
 | |
| 			// non-optimized (not-unsafe) reflection is a fair price.
 | |
| 			var rtid2 uintptr
 | |
| 			if !ti.flagHasPkgPath { // un-named type (slice or mpa or array)
 | |
| 				rtid2 = rtid
 | |
| 				if rk == reflect.Array {
 | |
| 					rtid2 = rt2id(ti.key) // ti.key for arrays = reflect.SliceOf(ti.elem)
 | |
| 				}
 | |
| 				if idx := fastpathAvIndex(rtid2); idx != -1 {
 | |
| 					fn.fe = fastpathAv[idx].encfn
 | |
| 					fn.fd = fastpathAv[idx].decfn
 | |
| 					fi.addrD = true
 | |
| 					fi.addrDf = false
 | |
| 					if rk == reflect.Array {
 | |
| 						fi.addrD = false // decode directly into array value (slice made from it)
 | |
| 					}
 | |
| 				}
 | |
| 			} else { // named type (with underlying type of map or slice or array)
 | |
| 				// try to use mapping for underlying type
 | |
| 				xfe, xrt := fnloadFastpathUnderlying(ti)
 | |
| 				if xfe != nil {
 | |
| 					xfnf := xfe.encfn
 | |
| 					xfnf2 := xfe.decfn
 | |
| 					if rk == reflect.Array {
 | |
| 						fi.addrD = false // decode directly into array value (slice made from it)
 | |
| 						fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
 | |
| 							xfnf2(d, xf, rvConvert(xrv, xrt))
 | |
| 						}
 | |
| 					} else {
 | |
| 						fi.addrD = true
 | |
| 						fi.addrDf = false // meaning it can be an address(ptr) or a value
 | |
| 						xptr2rt := reflect.PtrTo(xrt)
 | |
| 						fn.fd = func(d *Decoder, xf *codecFnInfo, xrv reflect.Value) {
 | |
| 							if xrv.Kind() == reflect.Ptr {
 | |
| 								xfnf2(d, xf, rvConvert(xrv, xptr2rt))
 | |
| 							} else {
 | |
| 								xfnf2(d, xf, rvConvert(xrv, xrt))
 | |
| 							}
 | |
| 						}
 | |
| 					}
 | |
| 					fn.fe = func(e *Encoder, xf *codecFnInfo, xrv reflect.Value) {
 | |
| 						xfnf(e, xf, rvConvert(xrv, xrt))
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		if fn.fe == nil && fn.fd == nil {
 | |
| 			switch rk {
 | |
| 			case reflect.Bool:
 | |
| 				fn.fe = (*Encoder).kBool
 | |
| 				fn.fd = (*Decoder).kBool
 | |
| 			case reflect.String:
 | |
| 				// Do not use different functions based on StringToRaw option, as that will statically
 | |
| 				// set the function for a string type, and if the Handle is modified thereafter,
 | |
| 				// behaviour is non-deterministic
 | |
| 				// i.e. DO NOT DO:
 | |
| 				//   if x.StringToRaw {
 | |
| 				//   	fn.fe = (*Encoder).kStringToRaw
 | |
| 				//   } else {
 | |
| 				//   	fn.fe = (*Encoder).kStringEnc
 | |
| 				//   }
 | |
| 
 | |
| 				fn.fe = (*Encoder).kString
 | |
| 				fn.fd = (*Decoder).kString
 | |
| 			case reflect.Int:
 | |
| 				fn.fd = (*Decoder).kInt
 | |
| 				fn.fe = (*Encoder).kInt
 | |
| 			case reflect.Int8:
 | |
| 				fn.fe = (*Encoder).kInt8
 | |
| 				fn.fd = (*Decoder).kInt8
 | |
| 			case reflect.Int16:
 | |
| 				fn.fe = (*Encoder).kInt16
 | |
| 				fn.fd = (*Decoder).kInt16
 | |
| 			case reflect.Int32:
 | |
| 				fn.fe = (*Encoder).kInt32
 | |
| 				fn.fd = (*Decoder).kInt32
 | |
| 			case reflect.Int64:
 | |
| 				fn.fe = (*Encoder).kInt64
 | |
| 				fn.fd = (*Decoder).kInt64
 | |
| 			case reflect.Uint:
 | |
| 				fn.fd = (*Decoder).kUint
 | |
| 				fn.fe = (*Encoder).kUint
 | |
| 			case reflect.Uint8:
 | |
| 				fn.fe = (*Encoder).kUint8
 | |
| 				fn.fd = (*Decoder).kUint8
 | |
| 			case reflect.Uint16:
 | |
| 				fn.fe = (*Encoder).kUint16
 | |
| 				fn.fd = (*Decoder).kUint16
 | |
| 			case reflect.Uint32:
 | |
| 				fn.fe = (*Encoder).kUint32
 | |
| 				fn.fd = (*Decoder).kUint32
 | |
| 			case reflect.Uint64:
 | |
| 				fn.fe = (*Encoder).kUint64
 | |
| 				fn.fd = (*Decoder).kUint64
 | |
| 			case reflect.Uintptr:
 | |
| 				fn.fe = (*Encoder).kUintptr
 | |
| 				fn.fd = (*Decoder).kUintptr
 | |
| 			case reflect.Float32:
 | |
| 				fn.fe = (*Encoder).kFloat32
 | |
| 				fn.fd = (*Decoder).kFloat32
 | |
| 			case reflect.Float64:
 | |
| 				fn.fe = (*Encoder).kFloat64
 | |
| 				fn.fd = (*Decoder).kFloat64
 | |
| 			case reflect.Complex64:
 | |
| 				fn.fe = (*Encoder).kComplex64
 | |
| 				fn.fd = (*Decoder).kComplex64
 | |
| 			case reflect.Complex128:
 | |
| 				fn.fe = (*Encoder).kComplex128
 | |
| 				fn.fd = (*Decoder).kComplex128
 | |
| 			case reflect.Chan:
 | |
| 				fn.fe = (*Encoder).kChan
 | |
| 				fn.fd = (*Decoder).kChan
 | |
| 			case reflect.Slice:
 | |
| 				fn.fe = (*Encoder).kSlice
 | |
| 				fn.fd = (*Decoder).kSlice
 | |
| 			case reflect.Array:
 | |
| 				fi.addrD = false // decode directly into array value (slice made from it)
 | |
| 				fn.fe = (*Encoder).kArray
 | |
| 				fn.fd = (*Decoder).kArray
 | |
| 			case reflect.Struct:
 | |
| 				if ti.anyOmitEmpty ||
 | |
| 					ti.flagMissingFielder ||
 | |
| 					ti.flagMissingFielderPtr {
 | |
| 					fn.fe = (*Encoder).kStruct
 | |
| 				} else {
 | |
| 					fn.fe = (*Encoder).kStructNoOmitempty
 | |
| 				}
 | |
| 				fn.fd = (*Decoder).kStruct
 | |
| 			case reflect.Map:
 | |
| 				fn.fe = (*Encoder).kMap
 | |
| 				fn.fd = (*Decoder).kMap
 | |
| 			case reflect.Interface:
 | |
| 				// encode: reflect.Interface are handled already by preEncodeValue
 | |
| 				fn.fd = (*Decoder).kInterface
 | |
| 				fn.fe = (*Encoder).kErr
 | |
| 			default:
 | |
| 				// reflect.Ptr and reflect.Interface are handled already by preEncodeValue
 | |
| 				fn.fe = (*Encoder).kErr
 | |
| 				fn.fd = (*Decoder).kErr
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // Handle defines a specific encoding format. It also stores any runtime state
 | |
| // used during an Encoding or Decoding session e.g. stored state about Types, etc.
 | |
| //
 | |
| // Once a handle is configured, it can be shared across multiple Encoders and Decoders.
 | |
| //
 | |
| // Note that a Handle is NOT safe for concurrent modification.
 | |
| //
 | |
| // A Handle also should not be modified after it is configured and has
 | |
| // been used at least once. This is because stored state may be out of sync with the
 | |
| // new configuration, and a data race can occur when multiple goroutines access it.
 | |
| // i.e. multiple Encoders or Decoders in different goroutines.
 | |
| //
 | |
| // Consequently, the typical usage model is that a Handle is pre-configured
 | |
| // before first time use, and not modified while in use.
 | |
| // Such a pre-configured Handle is safe for concurrent access.
 | |
| type Handle interface {
 | |
| 	Name() string
 | |
| 	getBasicHandle() *BasicHandle
 | |
| 	newEncDriver() encDriver
 | |
| 	newDecDriver() decDriver
 | |
| 	isBinary() bool
 | |
| 	isJson() bool // json is special for now, so track it
 | |
| 	// desc describes the current byte descriptor, or returns "unknown[XXX]" if not understood.
 | |
| 	desc(bd byte) string
 | |
| 	// init initializes the handle based on handle-specific info (beyond what is in BasicHandle)
 | |
| 	init()
 | |
| }
 | |
| 
 | |
| // Raw represents raw formatted bytes.
 | |
| // We "blindly" store it during encode and retrieve the raw bytes during decode.
 | |
| // Note: it is dangerous during encode, so we may gate the behaviour
 | |
| // behind an Encode flag which must be explicitly set.
 | |
| type Raw []byte
 | |
| 
 | |
| // RawExt represents raw unprocessed extension data.
 | |
| // Some codecs will decode extension data as a *RawExt
 | |
| // if there is no registered extension for the tag.
 | |
| //
 | |
| // Only one of Data or Value is nil.
 | |
| // If Data is nil, then the content of the RawExt is in the Value.
 | |
| type RawExt struct {
 | |
| 	Tag uint64
 | |
| 	// Data is the []byte which represents the raw ext. If nil, ext is exposed in Value.
 | |
| 	// Data is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of types
 | |
| 	Data []byte
 | |
| 	// Value represents the extension, if Data is nil.
 | |
| 	// Value is used by codecs (e.g. cbor, json) which leverage the format to do
 | |
| 	// custom serialization of the types.
 | |
| 	Value interface{}
 | |
| }
 | |
| 
 | |
| func (re *RawExt) setData(xbs []byte, zerocopy bool) {
 | |
| 	if zerocopy {
 | |
| 		re.Data = xbs
 | |
| 	} else {
 | |
| 		re.Data = append(re.Data[:0], xbs...)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // BytesExt handles custom (de)serialization of types to/from []byte.
 | |
| // It is used by codecs (e.g. binc, msgpack, simple) which do custom serialization of the types.
 | |
| type BytesExt interface {
 | |
| 	// WriteExt converts a value to a []byte.
 | |
| 	//
 | |
| 	// Note: v is a pointer iff the registered extension type is a struct or array kind.
 | |
| 	WriteExt(v interface{}) []byte
 | |
| 
 | |
| 	// ReadExt updates a value from a []byte.
 | |
| 	//
 | |
| 	// Note: dst is always a pointer kind to the registered extension type.
 | |
| 	ReadExt(dst interface{}, src []byte)
 | |
| }
 | |
| 
 | |
| // InterfaceExt handles custom (de)serialization of types to/from another interface{} value.
 | |
| // The Encoder or Decoder will then handle the further (de)serialization of that known type.
 | |
| //
 | |
| // It is used by codecs (e.g. cbor, json) which use the format to do custom serialization of types.
 | |
| type InterfaceExt interface {
 | |
| 	// ConvertExt converts a value into a simpler interface for easy encoding
 | |
| 	// e.g. convert time.Time to int64.
 | |
| 	//
 | |
| 	// Note: v is a pointer iff the registered extension type is a struct or array kind.
 | |
| 	ConvertExt(v interface{}) interface{}
 | |
| 
 | |
| 	// UpdateExt updates a value from a simpler interface for easy decoding
 | |
| 	// e.g. convert int64 to time.Time.
 | |
| 	//
 | |
| 	// Note: dst is always a pointer kind to the registered extension type.
 | |
| 	UpdateExt(dst interface{}, src interface{})
 | |
| }
 | |
| 
 | |
| // Ext handles custom (de)serialization of custom types / extensions.
 | |
| type Ext interface {
 | |
| 	BytesExt
 | |
| 	InterfaceExt
 | |
| }
 | |
| 
 | |
| // addExtWrapper is a wrapper implementation to support former AddExt exported method.
 | |
| type addExtWrapper struct {
 | |
| 	encFn func(reflect.Value) ([]byte, error)
 | |
| 	decFn func(reflect.Value, []byte) error
 | |
| }
 | |
| 
 | |
| func (x addExtWrapper) WriteExt(v interface{}) []byte {
 | |
| 	bs, err := x.encFn(reflect.ValueOf(v))
 | |
| 	halt.onerror(err)
 | |
| 	return bs
 | |
| }
 | |
| 
 | |
| func (x addExtWrapper) ReadExt(v interface{}, bs []byte) {
 | |
| 	halt.onerror(x.decFn(reflect.ValueOf(v), bs))
 | |
| }
 | |
| 
 | |
| func (x addExtWrapper) ConvertExt(v interface{}) interface{} {
 | |
| 	return x.WriteExt(v)
 | |
| }
 | |
| 
 | |
| func (x addExtWrapper) UpdateExt(dest interface{}, v interface{}) {
 | |
| 	x.ReadExt(dest, v.([]byte))
 | |
| }
 | |
| 
 | |
| type bytesExtFailer struct{}
 | |
| 
 | |
| func (bytesExtFailer) WriteExt(v interface{}) []byte {
 | |
| 	halt.onerror(errExtFnWriteExtUnsupported)
 | |
| 	return nil
 | |
| }
 | |
| func (bytesExtFailer) ReadExt(v interface{}, bs []byte) {
 | |
| 	halt.onerror(errExtFnReadExtUnsupported)
 | |
| }
 | |
| 
 | |
| type interfaceExtFailer struct{}
 | |
| 
 | |
| func (interfaceExtFailer) ConvertExt(v interface{}) interface{} {
 | |
| 	halt.onerror(errExtFnConvertExtUnsupported)
 | |
| 	return nil
 | |
| }
 | |
| func (interfaceExtFailer) UpdateExt(dest interface{}, v interface{}) {
 | |
| 	halt.onerror(errExtFnUpdateExtUnsupported)
 | |
| }
 | |
| 
 | |
| type bytesExtWrapper struct {
 | |
| 	interfaceExtFailer
 | |
| 	BytesExt
 | |
| }
 | |
| 
 | |
| type interfaceExtWrapper struct {
 | |
| 	bytesExtFailer
 | |
| 	InterfaceExt
 | |
| }
 | |
| 
 | |
| type extFailWrapper struct {
 | |
| 	bytesExtFailer
 | |
| 	interfaceExtFailer
 | |
| }
 | |
| 
 | |
| type binaryEncodingType struct{}
 | |
| 
 | |
| func (binaryEncodingType) isBinary() bool { return true }
 | |
| func (binaryEncodingType) isJson() bool   { return false }
 | |
| 
 | |
| type textEncodingType struct{}
 | |
| 
 | |
| func (textEncodingType) isBinary() bool { return false }
 | |
| func (textEncodingType) isJson() bool   { return false }
 | |
| 
 | |
| type notJsonType struct{}
 | |
| 
 | |
| func (notJsonType) isJson() bool { return false }
 | |
| 
 | |
| // noBuiltInTypes is embedded into many types which do not support builtins
 | |
| // e.g. msgpack, simple, cbor.
 | |
| 
 | |
| type noBuiltInTypes struct{}
 | |
| 
 | |
| func (noBuiltInTypes) EncodeBuiltin(rt uintptr, v interface{}) {}
 | |
| func (noBuiltInTypes) DecodeBuiltin(rt uintptr, v interface{}) {}
 | |
| 
 | |
| // bigenHelper handles ByteOrder operations directly using
 | |
| // arrays of bytes (not slice of bytes).
 | |
| //
 | |
| // Since byteorder operations are very common for encoding and decoding
 | |
| // numbers, lengths, etc - it is imperative that this operation is as
 | |
| // fast as possible. Removing indirection (pointer chasing) to look
 | |
| // at up to 8 bytes helps a lot here.
 | |
| //
 | |
| // For times where it is expedient to use a slice, delegate to the
 | |
| // bigenstd (equal to the binary.BigEndian value).
 | |
| //
 | |
| // retrofitted from stdlib: encoding/binary/BigEndian (ByteOrder)
 | |
| type bigenHelper struct{}
 | |
| 
 | |
| func (z bigenHelper) PutUint16(v uint16) (b [2]byte) {
 | |
| 	return [...]byte{
 | |
| 		byte(v >> 8),
 | |
| 		byte(v),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (z bigenHelper) PutUint32(v uint32) (b [4]byte) {
 | |
| 	return [...]byte{
 | |
| 		byte(v >> 24),
 | |
| 		byte(v >> 16),
 | |
| 		byte(v >> 8),
 | |
| 		byte(v),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (z bigenHelper) PutUint64(v uint64) (b [8]byte) {
 | |
| 	return [...]byte{
 | |
| 		byte(v >> 56),
 | |
| 		byte(v >> 48),
 | |
| 		byte(v >> 40),
 | |
| 		byte(v >> 32),
 | |
| 		byte(v >> 24),
 | |
| 		byte(v >> 16),
 | |
| 		byte(v >> 8),
 | |
| 		byte(v),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (z bigenHelper) Uint16(b [2]byte) (v uint16) {
 | |
| 	return uint16(b[1]) |
 | |
| 		uint16(b[0])<<8
 | |
| }
 | |
| 
 | |
| func (z bigenHelper) Uint32(b [4]byte) (v uint32) {
 | |
| 	return uint32(b[3]) |
 | |
| 		uint32(b[2])<<8 |
 | |
| 		uint32(b[1])<<16 |
 | |
| 		uint32(b[0])<<24
 | |
| }
 | |
| 
 | |
| func (z bigenHelper) Uint64(b [8]byte) (v uint64) {
 | |
| 	return uint64(b[7]) |
 | |
| 		uint64(b[6])<<8 |
 | |
| 		uint64(b[5])<<16 |
 | |
| 		uint64(b[4])<<24 |
 | |
| 		uint64(b[3])<<32 |
 | |
| 		uint64(b[2])<<40 |
 | |
| 		uint64(b[1])<<48 |
 | |
| 		uint64(b[0])<<56
 | |
| }
 | |
| 
 | |
| func (z bigenHelper) writeUint16(w *encWr, v uint16) {
 | |
| 	x := z.PutUint16(v)
 | |
| 	w.writen2(x[0], x[1])
 | |
| }
 | |
| 
 | |
| func (z bigenHelper) writeUint32(w *encWr, v uint32) {
 | |
| 	// w.writeb((z.PutUint32(v))[:])
 | |
| 	// x := z.PutUint32(v)
 | |
| 	// w.writeb(x[:])
 | |
| 	// w.writen4(x[0], x[1], x[2], x[3])
 | |
| 	w.writen4(z.PutUint32(v))
 | |
| }
 | |
| 
 | |
| func (z bigenHelper) writeUint64(w *encWr, v uint64) {
 | |
| 	w.writen8(z.PutUint64(v))
 | |
| }
 | |
| 
 | |
| type extTypeTagFn struct {
 | |
| 	rtid    uintptr
 | |
| 	rtidptr uintptr
 | |
| 	rt      reflect.Type
 | |
| 	tag     uint64
 | |
| 	ext     Ext
 | |
| }
 | |
| 
 | |
| type extHandle []extTypeTagFn
 | |
| 
 | |
| // AddExt registes an encode and decode function for a reflect.Type.
 | |
| // To deregister an Ext, call AddExt with nil encfn and/or nil decfn.
 | |
| //
 | |
| // Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
 | |
| func (x *BasicHandle) AddExt(rt reflect.Type, tag byte,
 | |
| 	encfn func(reflect.Value) ([]byte, error),
 | |
| 	decfn func(reflect.Value, []byte) error) (err error) {
 | |
| 	if encfn == nil || decfn == nil {
 | |
| 		return x.SetExt(rt, uint64(tag), nil)
 | |
| 	}
 | |
| 	return x.SetExt(rt, uint64(tag), addExtWrapper{encfn, decfn})
 | |
| }
 | |
| 
 | |
| // SetExt will set the extension for a tag and reflect.Type.
 | |
| // Note that the type must be a named type, and specifically not a pointer or Interface.
 | |
| // An error is returned if that is not honored.
 | |
| // To Deregister an ext, call SetExt with nil Ext.
 | |
| //
 | |
| // Deprecated: Use SetBytesExt or SetInterfaceExt on the Handle instead.
 | |
| func (x *BasicHandle) SetExt(rt reflect.Type, tag uint64, ext Ext) (err error) {
 | |
| 	if x.isInited() {
 | |
| 		return errHandleInited
 | |
| 	}
 | |
| 	if x.basicHandleRuntimeState == nil {
 | |
| 		x.basicHandleRuntimeState = new(basicHandleRuntimeState)
 | |
| 	}
 | |
| 	return x.basicHandleRuntimeState.setExt(rt, tag, ext)
 | |
| }
 | |
| 
 | |
| func (o extHandle) getExtForI(x interface{}) (v *extTypeTagFn) {
 | |
| 	if len(o) > 0 {
 | |
| 		v = o.getExt(i2rtid(x), true)
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (o extHandle) getExt(rtid uintptr, check bool) (v *extTypeTagFn) {
 | |
| 	if !check {
 | |
| 		return
 | |
| 	}
 | |
| 	for i := range o {
 | |
| 		v = &o[i]
 | |
| 		if v.rtid == rtid || v.rtidptr == rtid {
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func (o extHandle) getExtForTag(tag uint64) (v *extTypeTagFn) {
 | |
| 	for i := range o {
 | |
| 		v = &o[i]
 | |
| 		if v.tag == tag {
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| type intf2impl struct {
 | |
| 	rtid uintptr // for intf
 | |
| 	impl reflect.Type
 | |
| }
 | |
| 
 | |
| type intf2impls []intf2impl
 | |
| 
 | |
| // Intf2Impl maps an interface to an implementing type.
 | |
| // This allows us support infering the concrete type
 | |
| // and populating it when passed an interface.
 | |
| // e.g. var v io.Reader can be decoded as a bytes.Buffer, etc.
 | |
| //
 | |
| // Passing a nil impl will clear the mapping.
 | |
| func (o *intf2impls) Intf2Impl(intf, impl reflect.Type) (err error) {
 | |
| 	if impl != nil && !impl.Implements(intf) {
 | |
| 		return fmt.Errorf("Intf2Impl: %v does not implement %v", impl, intf)
 | |
| 	}
 | |
| 	rtid := rt2id(intf)
 | |
| 	o2 := *o
 | |
| 	for i := range o2 {
 | |
| 		v := &o2[i]
 | |
| 		if v.rtid == rtid {
 | |
| 			v.impl = impl
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 	*o = append(o2, intf2impl{rtid, impl})
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (o intf2impls) intf2impl(rtid uintptr) (rv reflect.Value) {
 | |
| 	for i := range o {
 | |
| 		v := &o[i]
 | |
| 		if v.rtid == rtid {
 | |
| 			if v.impl == nil {
 | |
| 				return
 | |
| 			}
 | |
| 			vkind := v.impl.Kind()
 | |
| 			if vkind == reflect.Ptr {
 | |
| 				return reflect.New(v.impl.Elem())
 | |
| 			}
 | |
| 			return rvZeroAddrK(v.impl, vkind)
 | |
| 		}
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // structFieldinfopathNode is a node in a tree, which allows us easily
 | |
| // walk the anonymous path.
 | |
| //
 | |
| // In the typical case, the node is not embedded/anonymous, and thus the parent
 | |
| // will be nil and this information becomes a value (not needing any indirection).
 | |
| type structFieldInfoPathNode struct {
 | |
| 	parent *structFieldInfoPathNode
 | |
| 
 | |
| 	offset   uint16
 | |
| 	index    uint16
 | |
| 	kind     uint8
 | |
| 	numderef uint8
 | |
| 
 | |
| 	// encNameAsciiAlphaNum and omitEmpty should be in structFieldInfo,
 | |
| 	// but are kept here for tighter packaging.
 | |
| 
 | |
| 	encNameAsciiAlphaNum bool // the encName only contains ascii alphabet and numbers
 | |
| 	omitEmpty            bool
 | |
| 
 | |
| 	typ reflect.Type
 | |
| }
 | |
| 
 | |
| // depth returns number of valid nodes in the hierachy
 | |
| func (path *structFieldInfoPathNode) depth() (d int) {
 | |
| TOP:
 | |
| 	if path != nil {
 | |
| 		d++
 | |
| 		path = path.parent
 | |
| 		goto TOP
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // field returns the field of the struct.
 | |
| func (path *structFieldInfoPathNode) field(v reflect.Value) (rv2 reflect.Value) {
 | |
| 	if parent := path.parent; parent != nil {
 | |
| 		v = parent.field(v)
 | |
| 		for j, k := uint8(0), parent.numderef; j < k; j++ {
 | |
| 			if rvIsNil(v) {
 | |
| 				return
 | |
| 			}
 | |
| 			v = v.Elem()
 | |
| 		}
 | |
| 	}
 | |
| 	return path.rvField(v)
 | |
| }
 | |
| 
 | |
| // fieldAlloc returns the field of the struct.
 | |
| // It allocates if a nil value was seen while searching.
 | |
| func (path *structFieldInfoPathNode) fieldAlloc(v reflect.Value) (rv2 reflect.Value) {
 | |
| 	if parent := path.parent; parent != nil {
 | |
| 		v = parent.fieldAlloc(v)
 | |
| 		for j, k := uint8(0), parent.numderef; j < k; j++ {
 | |
| 			if rvIsNil(v) {
 | |
| 				rvSetDirect(v, reflect.New(v.Type().Elem()))
 | |
| 			}
 | |
| 			v = v.Elem()
 | |
| 		}
 | |
| 	}
 | |
| 	return path.rvField(v)
 | |
| }
 | |
| 
 | |
| type structFieldInfo struct {
 | |
| 	encName string // encode name
 | |
| 
 | |
| 	// encNameHash uintptr
 | |
| 
 | |
| 	// fieldName string // currently unused
 | |
| 
 | |
| 	// encNameAsciiAlphaNum and omitEmpty should be here,
 | |
| 	// but are stored in structFieldInfoPathNode for tighter packaging.
 | |
| 
 | |
| 	path structFieldInfoPathNode
 | |
| }
 | |
| 
 | |
| func parseStructInfo(stag string) (toArray, omitEmpty bool, keytype valueType) {
 | |
| 	keytype = valueTypeString // default
 | |
| 	if stag == "" {
 | |
| 		return
 | |
| 	}
 | |
| 	ss := strings.Split(stag, ",")
 | |
| 	if len(ss) < 2 {
 | |
| 		return
 | |
| 	}
 | |
| 	for _, s := range ss[1:] {
 | |
| 		switch s {
 | |
| 		case "omitempty":
 | |
| 			omitEmpty = true
 | |
| 		case "toarray":
 | |
| 			toArray = true
 | |
| 		case "int":
 | |
| 			keytype = valueTypeInt
 | |
| 		case "uint":
 | |
| 			keytype = valueTypeUint
 | |
| 		case "float":
 | |
| 			keytype = valueTypeFloat
 | |
| 			// case "bool":
 | |
| 			// 	keytype = valueTypeBool
 | |
| 		case "string":
 | |
| 			keytype = valueTypeString
 | |
| 		}
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (si *structFieldInfo) parseTag(stag string) {
 | |
| 	if stag == "" {
 | |
| 		return
 | |
| 	}
 | |
| 	for i, s := range strings.Split(stag, ",") {
 | |
| 		if i == 0 {
 | |
| 			if s != "" {
 | |
| 				si.encName = s
 | |
| 			}
 | |
| 		} else {
 | |
| 			switch s {
 | |
| 			case "omitempty":
 | |
| 				si.path.omitEmpty = true
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| type sfiSortedByEncName []*structFieldInfo
 | |
| 
 | |
| func (p sfiSortedByEncName) Len() int           { return len(p) }
 | |
| func (p sfiSortedByEncName) Swap(i, j int)      { p[uint(i)], p[uint(j)] = p[uint(j)], p[uint(i)] }
 | |
| func (p sfiSortedByEncName) Less(i, j int) bool { return p[uint(i)].encName < p[uint(j)].encName }
 | |
| 
 | |
| // typeInfo4Container holds information that is only available for
 | |
| // containers like map, array, chan, slice.
 | |
| type typeInfo4Container struct {
 | |
| 	elem reflect.Type
 | |
| 	// key is:
 | |
| 	//   - if map kind: map key
 | |
| 	//   - if array kind: sliceOf(elem)
 | |
| 	//   - if chan kind: sliceof(elem)
 | |
| 	key reflect.Type
 | |
| 
 | |
| 	// fastpathUnderlying is underlying type of a named slice/map/array, as defined by go spec,
 | |
| 	// that is used by fastpath where we defined fastpath functions for the underlying type.
 | |
| 	//
 | |
| 	// for a map, it's a map; for a slice or array, it's a slice; else its nil.
 | |
| 	fastpathUnderlying reflect.Type
 | |
| 
 | |
| 	tikey  *typeInfo
 | |
| 	tielem *typeInfo
 | |
| }
 | |
| 
 | |
| // typeInfo keeps static (non-changing readonly)information
 | |
| // about each (non-ptr) type referenced in the encode/decode sequence.
 | |
| //
 | |
| // During an encode/decode sequence, we work as below:
 | |
| //   - If base is a built in type, en/decode base value
 | |
| //   - If base is registered as an extension, en/decode base value
 | |
| //   - If type is binary(M/Unm)arshaler, call Binary(M/Unm)arshal method
 | |
| //   - If type is text(M/Unm)arshaler, call Text(M/Unm)arshal method
 | |
| //   - Else decode appropriately based on the reflect.Kind
 | |
| type typeInfo struct {
 | |
| 	rt  reflect.Type
 | |
| 	ptr reflect.Type
 | |
| 
 | |
| 	// pkgpath string
 | |
| 
 | |
| 	rtid uintptr
 | |
| 
 | |
| 	numMeth uint16 // number of methods
 | |
| 	kind    uint8
 | |
| 	chandir uint8
 | |
| 
 | |
| 	anyOmitEmpty bool      // true if a struct, and any of the fields are tagged "omitempty"
 | |
| 	toArray      bool      // whether this (struct) type should be encoded as an array
 | |
| 	keyType      valueType // if struct, how is the field name stored in a stream? default is string
 | |
| 	mbs          bool      // base type (T or *T) is a MapBySlice
 | |
| 
 | |
| 	sfi4Name map[string]*structFieldInfo // map. used for finding sfi given a name
 | |
| 
 | |
| 	*typeInfo4Container
 | |
| 
 | |
| 	// ---- cpu cache line boundary?
 | |
| 
 | |
| 	size, keysize, elemsize uint32
 | |
| 
 | |
| 	keykind, elemkind uint8
 | |
| 
 | |
| 	flagHasPkgPath   bool // Type.PackagePath != ""
 | |
| 	flagComparable   bool
 | |
| 	flagCanTransient bool
 | |
| 
 | |
| 	flagMarshalInterface  bool // does this have custom (un)marshal implementation?
 | |
| 	flagSelferViaCodecgen bool
 | |
| 
 | |
| 	// custom implementation flags
 | |
| 	flagIsZeroer    bool
 | |
| 	flagIsZeroerPtr bool
 | |
| 
 | |
| 	flagIsCodecEmptyer    bool
 | |
| 	flagIsCodecEmptyerPtr bool
 | |
| 
 | |
| 	flagBinaryMarshaler    bool
 | |
| 	flagBinaryMarshalerPtr bool
 | |
| 
 | |
| 	flagBinaryUnmarshaler    bool
 | |
| 	flagBinaryUnmarshalerPtr bool
 | |
| 
 | |
| 	flagTextMarshaler    bool
 | |
| 	flagTextMarshalerPtr bool
 | |
| 
 | |
| 	flagTextUnmarshaler    bool
 | |
| 	flagTextUnmarshalerPtr bool
 | |
| 
 | |
| 	flagJsonMarshaler    bool
 | |
| 	flagJsonMarshalerPtr bool
 | |
| 
 | |
| 	flagJsonUnmarshaler    bool
 | |
| 	flagJsonUnmarshalerPtr bool
 | |
| 
 | |
| 	flagSelfer    bool
 | |
| 	flagSelferPtr bool
 | |
| 
 | |
| 	flagMissingFielder    bool
 | |
| 	flagMissingFielderPtr bool
 | |
| 
 | |
| 	infoFieldOmitempty bool
 | |
| 
 | |
| 	sfi structFieldInfos
 | |
| }
 | |
| 
 | |
| func (ti *typeInfo) siForEncName(name []byte) (si *structFieldInfo) {
 | |
| 	return ti.sfi4Name[string(name)]
 | |
| }
 | |
| 
 | |
| func (ti *typeInfo) resolve(x []structFieldInfo, ss map[string]uint16) (n int) {
 | |
| 	n = len(x)
 | |
| 
 | |
| 	for i := range x {
 | |
| 		ui := uint16(i)
 | |
| 		xn := x[i].encName
 | |
| 		j, ok := ss[xn]
 | |
| 		if ok {
 | |
| 			i2clear := ui                              // index to be cleared
 | |
| 			if x[i].path.depth() < x[j].path.depth() { // this one is shallower
 | |
| 				ss[xn] = ui
 | |
| 				i2clear = j
 | |
| 			}
 | |
| 			if x[i2clear].encName != "" {
 | |
| 				x[i2clear].encName = ""
 | |
| 				n--
 | |
| 			}
 | |
| 		} else {
 | |
| 			ss[xn] = ui
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (ti *typeInfo) init(x []structFieldInfo, n int) {
 | |
| 	var anyOmitEmpty bool
 | |
| 
 | |
| 	// remove all the nils (non-ready)
 | |
| 	m := make(map[string]*structFieldInfo, n)
 | |
| 	w := make([]structFieldInfo, n)
 | |
| 	y := make([]*structFieldInfo, n+n)
 | |
| 	z := y[n:]
 | |
| 	y = y[:n]
 | |
| 	n = 0
 | |
| 	for i := range x {
 | |
| 		if x[i].encName == "" {
 | |
| 			continue
 | |
| 		}
 | |
| 		if !anyOmitEmpty && x[i].path.omitEmpty {
 | |
| 			anyOmitEmpty = true
 | |
| 		}
 | |
| 		w[n] = x[i]
 | |
| 		y[n] = &w[n]
 | |
| 		m[x[i].encName] = &w[n]
 | |
| 		n++
 | |
| 	}
 | |
| 	if n != len(y) {
 | |
| 		halt.errorf("failure reading struct %v - expecting %d of %d valid fields, got %d", ti.rt, len(y), len(x), n)
 | |
| 	}
 | |
| 
 | |
| 	copy(z, y)
 | |
| 	sort.Sort(sfiSortedByEncName(z))
 | |
| 
 | |
| 	ti.anyOmitEmpty = anyOmitEmpty
 | |
| 	ti.sfi.load(y, z)
 | |
| 	ti.sfi4Name = m
 | |
| }
 | |
| 
 | |
| // Handling flagCanTransient
 | |
| //
 | |
| // We support transient optimization if the kind of the type is
 | |
| // a number, bool, string, or slice (of number/bool).
 | |
| // In addition, we also support if the kind is struct or array,
 | |
| // and the type does not contain any pointers recursively).
 | |
| //
 | |
| // Noteworthy that all reference types (string, slice, func, map, ptr, interface, etc) have pointers.
 | |
| //
 | |
| // If using transient for a type with a pointer, there is the potential for data corruption
 | |
| // when GC tries to follow a "transient" pointer which may become a non-pointer soon after.
 | |
| //
 | |
| 
 | |
| func transientBitsetFlags() *bitset32 {
 | |
| 	if transientValueHasStringSlice {
 | |
| 		return &numBoolStrSliceBitset
 | |
| 	}
 | |
| 	return &numBoolBitset
 | |
| }
 | |
| 
 | |
| func isCanTransient(t reflect.Type, k reflect.Kind) (v bool) {
 | |
| 	var bs = transientBitsetFlags()
 | |
| 	if bs.isset(byte(k)) {
 | |
| 		v = true
 | |
| 	} else if k == reflect.Slice {
 | |
| 		elem := t.Elem()
 | |
| 		v = numBoolBitset.isset(byte(elem.Kind()))
 | |
| 	} else if k == reflect.Array {
 | |
| 		elem := t.Elem()
 | |
| 		v = isCanTransient(elem, elem.Kind())
 | |
| 	} else if k == reflect.Struct {
 | |
| 		v = true
 | |
| 		for j, jlen := 0, t.NumField(); j < jlen; j++ {
 | |
| 			f := t.Field(j)
 | |
| 			if !isCanTransient(f.Type, f.Type.Kind()) {
 | |
| 				v = false
 | |
| 				return
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		v = false
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (ti *typeInfo) doSetFlagCanTransient() {
 | |
| 	if transientSizeMax > 0 {
 | |
| 		ti.flagCanTransient = ti.size <= transientSizeMax
 | |
| 	} else {
 | |
| 		ti.flagCanTransient = true
 | |
| 	}
 | |
| 	if ti.flagCanTransient {
 | |
| 		if !transientBitsetFlags().isset(ti.kind) {
 | |
| 			ti.flagCanTransient = isCanTransient(ti.rt, reflect.Kind(ti.kind))
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| type rtid2ti struct {
 | |
| 	rtid uintptr
 | |
| 	ti   *typeInfo
 | |
| }
 | |
| 
 | |
| // TypeInfos caches typeInfo for each type on first inspection.
 | |
| //
 | |
| // It is configured with a set of tag keys, which are used to get
 | |
| // configuration for the type.
 | |
| type TypeInfos struct {
 | |
| 	infos atomicTypeInfoSlice
 | |
| 	mu    sync.Mutex
 | |
| 	_     uint64 // padding (cache-aligned)
 | |
| 	tags  []string
 | |
| 	_     uint64 // padding (cache-aligned)
 | |
| }
 | |
| 
 | |
| // NewTypeInfos creates a TypeInfos given a set of struct tags keys.
 | |
| //
 | |
| // This allows users customize the struct tag keys which contain configuration
 | |
| // of their types.
 | |
| func NewTypeInfos(tags []string) *TypeInfos {
 | |
| 	return &TypeInfos{tags: tags}
 | |
| }
 | |
| 
 | |
| func (x *TypeInfos) structTag(t reflect.StructTag) (s string) {
 | |
| 	// check for tags: codec, json, in that order.
 | |
| 	// this allows seamless support for many configured structs.
 | |
| 	for _, x := range x.tags {
 | |
| 		s = t.Get(x)
 | |
| 		if s != "" {
 | |
| 			return s
 | |
| 		}
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func findTypeInfo(s []rtid2ti, rtid uintptr) (i uint, ti *typeInfo) {
 | |
| 	// binary search. adapted from sort/search.go.
 | |
| 	// Note: we use goto (instead of for loop) so this can be inlined.
 | |
| 
 | |
| 	var h uint
 | |
| 	var j = uint(len(s))
 | |
| LOOP:
 | |
| 	if i < j {
 | |
| 		h = (i + j) >> 1 // avoid overflow when computing h // h = i + (j-i)/2
 | |
| 		if s[h].rtid < rtid {
 | |
| 			i = h + 1
 | |
| 		} else {
 | |
| 			j = h
 | |
| 		}
 | |
| 		goto LOOP
 | |
| 	}
 | |
| 	if i < uint(len(s)) && s[i].rtid == rtid {
 | |
| 		ti = s[i].ti
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (x *TypeInfos) get(rtid uintptr, rt reflect.Type) (pti *typeInfo) {
 | |
| 	if pti = x.find(rtid); pti == nil {
 | |
| 		pti = x.load(rt)
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (x *TypeInfos) find(rtid uintptr) (pti *typeInfo) {
 | |
| 	sp := x.infos.load()
 | |
| 	if sp != nil {
 | |
| 		_, pti = findTypeInfo(sp, rtid)
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (x *TypeInfos) load(rt reflect.Type) (pti *typeInfo) {
 | |
| 	rk := rt.Kind()
 | |
| 
 | |
| 	if rk == reflect.Ptr { // || (rk == reflect.Interface && rtid != intfTypId) {
 | |
| 		halt.errorf("invalid kind passed to TypeInfos.get: %v - %v", rk, rt)
 | |
| 	}
 | |
| 
 | |
| 	rtid := rt2id(rt)
 | |
| 
 | |
| 	// do not hold lock while computing this.
 | |
| 	// it may lead to duplication, but that's ok.
 | |
| 	ti := typeInfo{
 | |
| 		rt:      rt,
 | |
| 		ptr:     reflect.PtrTo(rt),
 | |
| 		rtid:    rtid,
 | |
| 		kind:    uint8(rk),
 | |
| 		size:    uint32(rt.Size()),
 | |
| 		numMeth: uint16(rt.NumMethod()),
 | |
| 		keyType: valueTypeString, // default it - so it's never 0
 | |
| 
 | |
| 		// pkgpath: rt.PkgPath(),
 | |
| 		flagHasPkgPath: rt.PkgPath() != "",
 | |
| 	}
 | |
| 
 | |
| 	// bset sets custom implementation flags
 | |
| 	bset := func(when bool, b *bool) {
 | |
| 		if when {
 | |
| 			*b = true
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	var b1, b2 bool
 | |
| 
 | |
| 	b1, b2 = implIntf(rt, binaryMarshalerTyp)
 | |
| 	bset(b1, &ti.flagBinaryMarshaler)
 | |
| 	bset(b2, &ti.flagBinaryMarshalerPtr)
 | |
| 	b1, b2 = implIntf(rt, binaryUnmarshalerTyp)
 | |
| 	bset(b1, &ti.flagBinaryUnmarshaler)
 | |
| 	bset(b2, &ti.flagBinaryUnmarshalerPtr)
 | |
| 	b1, b2 = implIntf(rt, textMarshalerTyp)
 | |
| 	bset(b1, &ti.flagTextMarshaler)
 | |
| 	bset(b2, &ti.flagTextMarshalerPtr)
 | |
| 	b1, b2 = implIntf(rt, textUnmarshalerTyp)
 | |
| 	bset(b1, &ti.flagTextUnmarshaler)
 | |
| 	bset(b2, &ti.flagTextUnmarshalerPtr)
 | |
| 	b1, b2 = implIntf(rt, jsonMarshalerTyp)
 | |
| 	bset(b1, &ti.flagJsonMarshaler)
 | |
| 	bset(b2, &ti.flagJsonMarshalerPtr)
 | |
| 	b1, b2 = implIntf(rt, jsonUnmarshalerTyp)
 | |
| 	bset(b1, &ti.flagJsonUnmarshaler)
 | |
| 	bset(b2, &ti.flagJsonUnmarshalerPtr)
 | |
| 	b1, b2 = implIntf(rt, selferTyp)
 | |
| 	bset(b1, &ti.flagSelfer)
 | |
| 	bset(b2, &ti.flagSelferPtr)
 | |
| 	b1, b2 = implIntf(rt, missingFielderTyp)
 | |
| 	bset(b1, &ti.flagMissingFielder)
 | |
| 	bset(b2, &ti.flagMissingFielderPtr)
 | |
| 	b1, b2 = implIntf(rt, iszeroTyp)
 | |
| 	bset(b1, &ti.flagIsZeroer)
 | |
| 	bset(b2, &ti.flagIsZeroerPtr)
 | |
| 	b1, b2 = implIntf(rt, isCodecEmptyerTyp)
 | |
| 	bset(b1, &ti.flagIsCodecEmptyer)
 | |
| 	bset(b2, &ti.flagIsCodecEmptyerPtr)
 | |
| 
 | |
| 	b1, b2 = implIntf(rt, isSelferViaCodecgenerTyp)
 | |
| 	ti.flagSelferViaCodecgen = b1 || b2
 | |
| 
 | |
| 	ti.flagMarshalInterface = ti.flagSelfer || ti.flagSelferPtr ||
 | |
| 		ti.flagSelferViaCodecgen ||
 | |
| 		ti.flagBinaryMarshaler || ti.flagBinaryMarshalerPtr ||
 | |
| 		ti.flagBinaryUnmarshaler || ti.flagBinaryUnmarshalerPtr ||
 | |
| 		ti.flagTextMarshaler || ti.flagTextMarshalerPtr ||
 | |
| 		ti.flagTextUnmarshaler || ti.flagTextUnmarshalerPtr ||
 | |
| 		ti.flagJsonMarshaler || ti.flagJsonMarshalerPtr ||
 | |
| 		ti.flagJsonUnmarshaler || ti.flagJsonUnmarshalerPtr
 | |
| 
 | |
| 	b1 = rt.Comparable()
 | |
| 	// bset(b1, &ti.flagComparable)
 | |
| 	ti.flagComparable = b1
 | |
| 
 | |
| 	ti.doSetFlagCanTransient()
 | |
| 
 | |
| 	var tt reflect.Type
 | |
| 	switch rk {
 | |
| 	case reflect.Struct:
 | |
| 		var omitEmpty bool
 | |
| 		if f, ok := rt.FieldByName(structInfoFieldName); ok {
 | |
| 			ti.toArray, omitEmpty, ti.keyType = parseStructInfo(x.structTag(f.Tag))
 | |
| 			ti.infoFieldOmitempty = omitEmpty
 | |
| 		} else {
 | |
| 			ti.keyType = valueTypeString
 | |
| 		}
 | |
| 		pp, pi := &pool4tiload, pool4tiload.Get()
 | |
| 		pv := pi.(*typeInfoLoad)
 | |
| 		pv.reset()
 | |
| 		pv.etypes = append(pv.etypes, ti.rtid)
 | |
| 		x.rget(rt, rtid, nil, pv, omitEmpty)
 | |
| 		n := ti.resolve(pv.sfis, pv.sfiNames)
 | |
| 		ti.init(pv.sfis, n)
 | |
| 		pp.Put(pi)
 | |
| 	case reflect.Map:
 | |
| 		ti.typeInfo4Container = new(typeInfo4Container)
 | |
| 		ti.elem = rt.Elem()
 | |
| 		for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
 | |
| 		}
 | |
| 		ti.tielem = x.get(rt2id(tt), tt)
 | |
| 		ti.elemkind = uint8(ti.elem.Kind())
 | |
| 		ti.elemsize = uint32(ti.elem.Size())
 | |
| 		ti.key = rt.Key()
 | |
| 		for tt = ti.key; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
 | |
| 		}
 | |
| 		ti.tikey = x.get(rt2id(tt), tt)
 | |
| 		ti.keykind = uint8(ti.key.Kind())
 | |
| 		ti.keysize = uint32(ti.key.Size())
 | |
| 		if ti.flagHasPkgPath {
 | |
| 			ti.fastpathUnderlying = reflect.MapOf(ti.key, ti.elem)
 | |
| 		}
 | |
| 	case reflect.Slice:
 | |
| 		ti.typeInfo4Container = new(typeInfo4Container)
 | |
| 		ti.mbs, b2 = implIntf(rt, mapBySliceTyp)
 | |
| 		if !ti.mbs && b2 {
 | |
| 			ti.mbs = b2
 | |
| 		}
 | |
| 		ti.elem = rt.Elem()
 | |
| 		for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
 | |
| 		}
 | |
| 		ti.tielem = x.get(rt2id(tt), tt)
 | |
| 		ti.elemkind = uint8(ti.elem.Kind())
 | |
| 		ti.elemsize = uint32(ti.elem.Size())
 | |
| 		if ti.flagHasPkgPath {
 | |
| 			ti.fastpathUnderlying = reflect.SliceOf(ti.elem)
 | |
| 		}
 | |
| 	case reflect.Chan:
 | |
| 		ti.typeInfo4Container = new(typeInfo4Container)
 | |
| 		ti.elem = rt.Elem()
 | |
| 		for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
 | |
| 		}
 | |
| 		ti.tielem = x.get(rt2id(tt), tt)
 | |
| 		ti.elemkind = uint8(ti.elem.Kind())
 | |
| 		ti.elemsize = uint32(ti.elem.Size())
 | |
| 		ti.chandir = uint8(rt.ChanDir())
 | |
| 		ti.key = reflect.SliceOf(ti.elem)
 | |
| 		ti.keykind = uint8(reflect.Slice)
 | |
| 	case reflect.Array:
 | |
| 		ti.typeInfo4Container = new(typeInfo4Container)
 | |
| 		ti.mbs, b2 = implIntf(rt, mapBySliceTyp)
 | |
| 		if !ti.mbs && b2 {
 | |
| 			ti.mbs = b2
 | |
| 		}
 | |
| 		ti.elem = rt.Elem()
 | |
| 		ti.elemkind = uint8(ti.elem.Kind())
 | |
| 		ti.elemsize = uint32(ti.elem.Size())
 | |
| 		for tt = ti.elem; tt.Kind() == reflect.Ptr; tt = tt.Elem() {
 | |
| 		}
 | |
| 		ti.tielem = x.get(rt2id(tt), tt)
 | |
| 		ti.key = reflect.SliceOf(ti.elem)
 | |
| 		ti.keykind = uint8(reflect.Slice)
 | |
| 		ti.keysize = uint32(ti.key.Size())
 | |
| 		if ti.flagHasPkgPath {
 | |
| 			ti.fastpathUnderlying = ti.key
 | |
| 		}
 | |
| 
 | |
| 		// MARKER: reflect.Ptr cannot happen here, as we halt early if reflect.Ptr passed in
 | |
| 		// case reflect.Ptr:
 | |
| 		// 	ti.elem = rt.Elem()
 | |
| 		// 	ti.elemkind = uint8(ti.elem.Kind())
 | |
| 		// 	ti.elemsize = uint32(ti.elem.Size())
 | |
| 	}
 | |
| 
 | |
| 	x.mu.Lock()
 | |
| 	sp := x.infos.load()
 | |
| 	// since this is an atomic load/store, we MUST use a different array each time,
 | |
| 	// else we have a data race when a store is happening simultaneously with a findRtidFn call.
 | |
| 	if sp == nil {
 | |
| 		pti = &ti
 | |
| 		sp = []rtid2ti{{rtid, pti}}
 | |
| 		x.infos.store(sp)
 | |
| 	} else {
 | |
| 		var idx uint
 | |
| 		idx, pti = findTypeInfo(sp, rtid)
 | |
| 		if pti == nil {
 | |
| 			pti = &ti
 | |
| 			sp2 := make([]rtid2ti, len(sp)+1)
 | |
| 			copy(sp2[idx+1:], sp[idx:])
 | |
| 			copy(sp2, sp[:idx])
 | |
| 			sp2[idx] = rtid2ti{rtid, pti}
 | |
| 			x.infos.store(sp2)
 | |
| 		}
 | |
| 	}
 | |
| 	x.mu.Unlock()
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (x *TypeInfos) rget(rt reflect.Type, rtid uintptr,
 | |
| 	path *structFieldInfoPathNode, pv *typeInfoLoad, omitEmpty bool) {
 | |
| 	// Read up fields and store how to access the value.
 | |
| 	//
 | |
| 	// It uses go's rules for message selectors,
 | |
| 	// which say that the field with the shallowest depth is selected.
 | |
| 	//
 | |
| 	// Note: we consciously use slices, not a map, to simulate a set.
 | |
| 	//       Typically, types have < 16 fields,
 | |
| 	//       and iteration using equals is faster than maps there
 | |
| 	flen := rt.NumField()
 | |
| LOOP:
 | |
| 	for j, jlen := uint16(0), uint16(flen); j < jlen; j++ {
 | |
| 		f := rt.Field(int(j))
 | |
| 		fkind := f.Type.Kind()
 | |
| 
 | |
| 		// skip if a func type, or is unexported, or structTag value == "-"
 | |
| 		switch fkind {
 | |
| 		case reflect.Func, reflect.UnsafePointer:
 | |
| 			continue LOOP
 | |
| 		}
 | |
| 
 | |
| 		isUnexported := f.PkgPath != ""
 | |
| 		if isUnexported && !f.Anonymous {
 | |
| 			continue
 | |
| 		}
 | |
| 		stag := x.structTag(f.Tag)
 | |
| 		if stag == "-" {
 | |
| 			continue
 | |
| 		}
 | |
| 		var si structFieldInfo
 | |
| 
 | |
| 		var numderef uint8 = 0
 | |
| 		for xft := f.Type; xft.Kind() == reflect.Ptr; xft = xft.Elem() {
 | |
| 			numderef++
 | |
| 		}
 | |
| 
 | |
| 		var parsed bool
 | |
| 		// if anonymous and no struct tag (or it's blank),
 | |
| 		// and a struct (or pointer to struct), inline it.
 | |
| 		if f.Anonymous && fkind != reflect.Interface {
 | |
| 			// ^^ redundant but ok: per go spec, an embedded pointer type cannot be to an interface
 | |
| 			ft := f.Type
 | |
| 			isPtr := ft.Kind() == reflect.Ptr
 | |
| 			for ft.Kind() == reflect.Ptr {
 | |
| 				ft = ft.Elem()
 | |
| 			}
 | |
| 			isStruct := ft.Kind() == reflect.Struct
 | |
| 
 | |
| 			// Ignore embedded fields of unexported non-struct types.
 | |
| 			// Also, from go1.10, ignore pointers to unexported struct types
 | |
| 			// because unmarshal cannot assign a new struct to an unexported field.
 | |
| 			// See https://golang.org/issue/21357
 | |
| 			if (isUnexported && !isStruct) || (!allowSetUnexportedEmbeddedPtr && isUnexported && isPtr) {
 | |
| 				continue
 | |
| 			}
 | |
| 			doInline := stag == ""
 | |
| 			if !doInline {
 | |
| 				si.parseTag(stag)
 | |
| 				parsed = true
 | |
| 				doInline = si.encName == "" // si.isZero()
 | |
| 			}
 | |
| 			if doInline && isStruct {
 | |
| 				// if etypes contains this, don't call rget again (as fields are already seen here)
 | |
| 				ftid := rt2id(ft)
 | |
| 				// We cannot recurse forever, but we need to track other field depths.
 | |
| 				// So - we break if we see a type twice (not the first time).
 | |
| 				// This should be sufficient to handle an embedded type that refers to its
 | |
| 				// owning type, which then refers to its embedded type.
 | |
| 				processIt := true
 | |
| 				numk := 0
 | |
| 				for _, k := range pv.etypes {
 | |
| 					if k == ftid {
 | |
| 						numk++
 | |
| 						if numk == rgetMaxRecursion {
 | |
| 							processIt = false
 | |
| 							break
 | |
| 						}
 | |
| 					}
 | |
| 				}
 | |
| 				if processIt {
 | |
| 					pv.etypes = append(pv.etypes, ftid)
 | |
| 					path2 := &structFieldInfoPathNode{
 | |
| 						parent:   path,
 | |
| 						typ:      f.Type,
 | |
| 						offset:   uint16(f.Offset),
 | |
| 						index:    j,
 | |
| 						kind:     uint8(fkind),
 | |
| 						numderef: numderef,
 | |
| 					}
 | |
| 					x.rget(ft, ftid, path2, pv, omitEmpty)
 | |
| 				}
 | |
| 				continue
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		// after the anonymous dance: if an unexported field, skip
 | |
| 		if isUnexported || f.Name == "" { // f.Name cannot be "", but defensively handle it
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		si.path = structFieldInfoPathNode{
 | |
| 			parent:   path,
 | |
| 			typ:      f.Type,
 | |
| 			offset:   uint16(f.Offset),
 | |
| 			index:    j,
 | |
| 			kind:     uint8(fkind),
 | |
| 			numderef: numderef,
 | |
| 			// set asciiAlphaNum to true (default); checked and may be set to false below
 | |
| 			encNameAsciiAlphaNum: true,
 | |
| 			// note: omitEmpty might have been set in an earlier parseTag call, etc - so carry it forward
 | |
| 			omitEmpty: si.path.omitEmpty,
 | |
| 		}
 | |
| 
 | |
| 		if !parsed {
 | |
| 			si.encName = f.Name
 | |
| 			si.parseTag(stag)
 | |
| 			parsed = true
 | |
| 		} else if si.encName == "" {
 | |
| 			si.encName = f.Name
 | |
| 		}
 | |
| 
 | |
| 		// si.encNameHash = maxUintptr() // hashShortString(bytesView(si.encName))
 | |
| 
 | |
| 		if omitEmpty {
 | |
| 			si.path.omitEmpty = true
 | |
| 		}
 | |
| 
 | |
| 		for i := len(si.encName) - 1; i >= 0; i-- { // bounds-check elimination
 | |
| 			if !asciiAlphaNumBitset.isset(si.encName[i]) {
 | |
| 				si.path.encNameAsciiAlphaNum = false
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		pv.sfis = append(pv.sfis, si)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func implIntf(rt, iTyp reflect.Type) (base bool, indir bool) {
 | |
| 	// return rt.Implements(iTyp), reflect.PtrTo(rt).Implements(iTyp)
 | |
| 
 | |
| 	// if I's method is defined on T (ie T implements I), then *T implements I.
 | |
| 	// The converse is not true.
 | |
| 
 | |
| 	// Type.Implements can be expensive, as it does a simulataneous linear search across 2 lists
 | |
| 	// with alphanumeric string comparisons.
 | |
| 	// If we can avoid running one of these 2 calls, we should.
 | |
| 
 | |
| 	base = rt.Implements(iTyp)
 | |
| 	if base {
 | |
| 		indir = true
 | |
| 	} else {
 | |
| 		indir = reflect.PtrTo(rt).Implements(iTyp)
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func bool2int(b bool) (v uint8) {
 | |
| 	// MARKER: optimized to be a single instruction
 | |
| 	if b {
 | |
| 		v = 1
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func isSliceBoundsError(s string) bool {
 | |
| 	return strings.Contains(s, "index out of range") ||
 | |
| 		strings.Contains(s, "slice bounds out of range")
 | |
| }
 | |
| 
 | |
| func sprintf(format string, v ...interface{}) string {
 | |
| 	return fmt.Sprintf(format, v...)
 | |
| }
 | |
| 
 | |
| func panicValToErr(h errDecorator, v interface{}, err *error) {
 | |
| 	if v == *err {
 | |
| 		return
 | |
| 	}
 | |
| 	switch xerr := v.(type) {
 | |
| 	case nil:
 | |
| 	case runtime.Error:
 | |
| 		d, dok := h.(*Decoder)
 | |
| 		if dok && d.bytes && isSliceBoundsError(xerr.Error()) {
 | |
| 			*err = io.ErrUnexpectedEOF
 | |
| 		} else {
 | |
| 			h.wrapErr(xerr, err)
 | |
| 		}
 | |
| 	case error:
 | |
| 		switch xerr {
 | |
| 		case nil:
 | |
| 		case io.EOF, io.ErrUnexpectedEOF, errEncoderNotInitialized, errDecoderNotInitialized:
 | |
| 			// treat as special (bubble up)
 | |
| 			*err = xerr
 | |
| 		default:
 | |
| 			h.wrapErr(xerr, err)
 | |
| 		}
 | |
| 	default:
 | |
| 		// we don't expect this to happen (as this library always panics with an error)
 | |
| 		h.wrapErr(fmt.Errorf("%v", v), err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func usableByteSlice(bs []byte, slen int) (out []byte, changed bool) {
 | |
| 	const maxCap = 1024 * 1024 * 64 // 64MB
 | |
| 	const skipMaxCap = false        // allow to test
 | |
| 	if slen <= 0 {
 | |
| 		return []byte{}, true
 | |
| 	}
 | |
| 	if slen <= cap(bs) {
 | |
| 		return bs[:slen], false
 | |
| 	}
 | |
| 	// slen > cap(bs) ... handle memory overload appropriately
 | |
| 	if skipMaxCap || slen <= maxCap {
 | |
| 		return make([]byte, slen), true
 | |
| 	}
 | |
| 	return make([]byte, maxCap), true
 | |
| }
 | |
| 
 | |
| func mapKeyFastKindFor(k reflect.Kind) mapKeyFastKind {
 | |
| 	return mapKeyFastKindVals[k&31]
 | |
| }
 | |
| 
 | |
| // ----
 | |
| 
 | |
| type codecFnInfo struct {
 | |
| 	ti     *typeInfo
 | |
| 	xfFn   Ext
 | |
| 	xfTag  uint64
 | |
| 	addrD  bool
 | |
| 	addrDf bool // force: if addrD, then decode function MUST take a ptr
 | |
| 	addrE  bool
 | |
| 	// addrEf bool // force: if addrE, then encode function MUST take a ptr
 | |
| }
 | |
| 
 | |
| // codecFn encapsulates the captured variables and the encode function.
 | |
| // This way, we only do some calculations one times, and pass to the
 | |
| // code block that should be called (encapsulated in a function)
 | |
| // instead of executing the checks every time.
 | |
| type codecFn struct {
 | |
| 	i  codecFnInfo
 | |
| 	fe func(*Encoder, *codecFnInfo, reflect.Value)
 | |
| 	fd func(*Decoder, *codecFnInfo, reflect.Value)
 | |
| 	// _  [1]uint64 // padding (cache-aligned)
 | |
| }
 | |
| 
 | |
| type codecRtidFn struct {
 | |
| 	rtid uintptr
 | |
| 	fn   *codecFn
 | |
| }
 | |
| 
 | |
| func makeExt(ext interface{}) Ext {
 | |
| 	switch t := ext.(type) {
 | |
| 	case Ext:
 | |
| 		return t
 | |
| 	case BytesExt:
 | |
| 		return &bytesExtWrapper{BytesExt: t}
 | |
| 	case InterfaceExt:
 | |
| 		return &interfaceExtWrapper{InterfaceExt: t}
 | |
| 	}
 | |
| 	return &extFailWrapper{}
 | |
| }
 | |
| 
 | |
| func baseRV(v interface{}) (rv reflect.Value) {
 | |
| 	// use reflect.ValueOf, not rv4i, as of go 1.16beta, rv4i was not inlineable
 | |
| 	for rv = reflect.ValueOf(v); rv.Kind() == reflect.Ptr; rv = rv.Elem() {
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // ----
 | |
| 
 | |
| // these "checkOverflow" functions must be inlinable, and not call anybody.
 | |
| // Overflow means that the value cannot be represented without wrapping/overflow.
 | |
| // Overflow=false does not mean that the value can be represented without losing precision
 | |
| // (especially for floating point).
 | |
| 
 | |
| type checkOverflow struct{}
 | |
| 
 | |
| func (checkOverflow) Float32(v float64) (overflow bool) {
 | |
| 	if v < 0 {
 | |
| 		v = -v
 | |
| 	}
 | |
| 	return math.MaxFloat32 < v && v <= math.MaxFloat64
 | |
| }
 | |
| func (checkOverflow) Uint(v uint64, bitsize uint8) (overflow bool) {
 | |
| 	if v != 0 && v != (v<<(64-bitsize))>>(64-bitsize) {
 | |
| 		overflow = true
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| func (checkOverflow) Int(v int64, bitsize uint8) (overflow bool) {
 | |
| 	if v != 0 && v != (v<<(64-bitsize))>>(64-bitsize) {
 | |
| 		overflow = true
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (checkOverflow) Uint2Int(v uint64, neg bool) (overflow bool) {
 | |
| 	return (neg && v > 1<<63) || (!neg && v >= 1<<63)
 | |
| }
 | |
| 
 | |
| func (checkOverflow) SignedInt(v uint64) (overflow bool) {
 | |
| 	//e.g. -127 to 128 for int8
 | |
| 	// pos := (v >> 63) == 0
 | |
| 	// ui2 := v & 0x7fffffffffffffff
 | |
| 	// if pos {
 | |
| 	// 	if ui2 > math.MaxInt64 {
 | |
| 	// 		overflow = true
 | |
| 	// 	}
 | |
| 	// } else {
 | |
| 	// 	if ui2 > math.MaxInt64-1 {
 | |
| 	// 		overflow = true
 | |
| 	// 	}
 | |
| 	// }
 | |
| 
 | |
| 	// a signed integer has overflow if the sign (first) bit is 1 (negative)
 | |
| 	// and the numbers after the sign bit is > maxint64 - 1
 | |
| 	overflow = (v>>63) != 0 && v&0x7fffffffffffffff > math.MaxInt64-1
 | |
| 
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (x checkOverflow) Float32V(v float64) float64 {
 | |
| 	if x.Float32(v) {
 | |
| 		halt.errorf("float32 overflow: %v", v)
 | |
| 	}
 | |
| 	return v
 | |
| }
 | |
| func (x checkOverflow) UintV(v uint64, bitsize uint8) uint64 {
 | |
| 	if x.Uint(v, bitsize) {
 | |
| 		halt.errorf("uint64 overflow: %v", v)
 | |
| 	}
 | |
| 	return v
 | |
| }
 | |
| func (x checkOverflow) IntV(v int64, bitsize uint8) int64 {
 | |
| 	if x.Int(v, bitsize) {
 | |
| 		halt.errorf("int64 overflow: %v", v)
 | |
| 	}
 | |
| 	return v
 | |
| }
 | |
| func (x checkOverflow) SignedIntV(v uint64) int64 {
 | |
| 	if x.SignedInt(v) {
 | |
| 		halt.errorf("uint64 to int64 overflow: %v", v)
 | |
| 	}
 | |
| 	return int64(v)
 | |
| }
 | |
| 
 | |
| // ------------------ FLOATING POINT -----------------
 | |
| 
 | |
| func isNaN64(f float64) bool { return f != f }
 | |
| 
 | |
| func isWhitespaceChar(v byte) bool {
 | |
| 	// these are in order of speed below ...
 | |
| 
 | |
| 	return v < 33
 | |
| 	// return v < 33 && whitespaceCharBitset64.isset(v)
 | |
| 	// return v < 33 && (v == ' ' || v == '\n' || v == '\t' || v == '\r')
 | |
| 	// return v == ' ' || v == '\n' || v == '\t' || v == '\r'
 | |
| 	// return whitespaceCharBitset.isset(v)
 | |
| }
 | |
| 
 | |
| func isNumberChar(v byte) bool {
 | |
| 	// these are in order of speed below ...
 | |
| 
 | |
| 	return numCharBitset.isset(v)
 | |
| 	// return v < 64 && numCharNoExpBitset64.isset(v) || v == 'e' || v == 'E'
 | |
| 	// return v > 42 && v < 102 && numCharWithExpBitset64.isset(v-42)
 | |
| }
 | |
| 
 | |
| // -----------------------
 | |
| 
 | |
| type ioFlusher interface {
 | |
| 	Flush() error
 | |
| }
 | |
| 
 | |
| type ioBuffered interface {
 | |
| 	Buffered() int
 | |
| }
 | |
| 
 | |
| // -----------------------
 | |
| 
 | |
| type sfiRv struct {
 | |
| 	v *structFieldInfo
 | |
| 	r reflect.Value
 | |
| }
 | |
| 
 | |
| // ------
 | |
| 
 | |
| // bitset types are better than [256]bool, because they permit the whole
 | |
| // bitset array being on a single cache line and use less memory.
 | |
| //
 | |
| // Also, since pos is a byte (0-255), there's no bounds checks on indexing (cheap).
 | |
| //
 | |
| // We previously had bitset128 [16]byte, and bitset32 [4]byte, but those introduces
 | |
| // bounds checking, so we discarded them, and everyone uses bitset256.
 | |
| //
 | |
| // given x > 0 and n > 0 and x is exactly 2^n, then pos/x === pos>>n AND pos%x === pos&(x-1).
 | |
| // consequently, pos/32 === pos>>5, pos/16 === pos>>4, pos/8 === pos>>3, pos%8 == pos&7
 | |
| //
 | |
| // Note that using >> or & is faster than using / or %, as division is quite expensive if not optimized.
 | |
| 
 | |
| // MARKER:
 | |
| // We noticed a little performance degradation when using bitset256 as [32]byte (or bitset32 as uint32).
 | |
| // For example, json encoding went from 188K ns/op to 168K ns/op (~ 10% reduction).
 | |
| // Consequently, we are using a [NNN]bool for bitsetNNN.
 | |
| // To eliminate bounds-checking, we use x % v as that is guaranteed to be within bounds.
 | |
| 
 | |
| // ----
 | |
| type bitset32 [32]bool
 | |
| 
 | |
| func (x *bitset32) set(pos byte) *bitset32 {
 | |
| 	x[pos&31] = true // x[pos%32] = true
 | |
| 	return x
 | |
| }
 | |
| func (x *bitset32) isset(pos byte) bool {
 | |
| 	return x[pos&31] // x[pos%32]
 | |
| }
 | |
| 
 | |
| type bitset256 [256]bool
 | |
| 
 | |
| func (x *bitset256) set(pos byte) *bitset256 {
 | |
| 	x[pos] = true
 | |
| 	return x
 | |
| }
 | |
| func (x *bitset256) isset(pos byte) bool {
 | |
| 	return x[pos]
 | |
| }
 | |
| 
 | |
| // ------------
 | |
| 
 | |
| type panicHdl struct{}
 | |
| 
 | |
| // errorv will panic if err is defined (not nil)
 | |
| func (panicHdl) onerror(err error) {
 | |
| 	if err != nil {
 | |
| 		panic(err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // errorf will always panic, using the parameters passed.
 | |
| //
 | |
| // Note: it is ok to pass in a stringView, as it will just pass it directly
 | |
| // to a fmt.Sprintf call and not hold onto it.
 | |
| //
 | |
| //go:noinline
 | |
| func (panicHdl) errorf(format string, params ...interface{}) {
 | |
| 	if format == "" {
 | |
| 		panic(errPanicUndefined)
 | |
| 	}
 | |
| 	if len(params) == 0 {
 | |
| 		panic(errors.New(format))
 | |
| 	}
 | |
| 	panic(fmt.Errorf(format, params...))
 | |
| }
 | |
| 
 | |
| // ----------------------------------------------------
 | |
| 
 | |
| type errDecorator interface {
 | |
| 	wrapErr(in error, out *error)
 | |
| }
 | |
| 
 | |
| type errDecoratorDef struct{}
 | |
| 
 | |
| func (errDecoratorDef) wrapErr(v error, e *error) { *e = v }
 | |
| 
 | |
| // ----------------------------------------------------
 | |
| 
 | |
| type mustHdl struct{}
 | |
| 
 | |
| func (mustHdl) String(s string, err error) string {
 | |
| 	halt.onerror(err)
 | |
| 	return s
 | |
| }
 | |
| func (mustHdl) Int(s int64, err error) int64 {
 | |
| 	halt.onerror(err)
 | |
| 	return s
 | |
| }
 | |
| func (mustHdl) Uint(s uint64, err error) uint64 {
 | |
| 	halt.onerror(err)
 | |
| 	return s
 | |
| }
 | |
| func (mustHdl) Float(s float64, err error) float64 {
 | |
| 	halt.onerror(err)
 | |
| 	return s
 | |
| }
 | |
| 
 | |
| // -------------------
 | |
| 
 | |
| func freelistCapacity(length int) (capacity int) {
 | |
| 	for capacity = 8; capacity <= length; capacity *= 2 {
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // bytesFreelist is a list of byte buffers, sorted by cap.
 | |
| //
 | |
| // In anecdotal testing (running go test -tsd 1..6), we couldn't get
 | |
| // the length of the list > 4 at any time. So we believe a linear search
 | |
| // without bounds checking is sufficient.
 | |
| //
 | |
| // Typical usage model:
 | |
| //
 | |
| //	peek may go together with put, iff pop=true. peek gets largest byte slice temporarily.
 | |
| //	check is used to switch a []byte if necessary
 | |
| //	get/put go together
 | |
| //
 | |
| // Given that folks may get a []byte, and then append to it a lot which may re-allocate
 | |
| // a new []byte, we should try to return both (one received from blist and new one allocated).
 | |
| //
 | |
| // Typical usage model for get/put, when we don't know whether we may need more than requested
 | |
| //
 | |
| //	v0 := blist.get()
 | |
| //	v1 := v0
 | |
| //	... use v1 ...
 | |
| //	blist.put(v1)
 | |
| //	if !byteSliceSameData(v0, v1) {
 | |
| //	  blist.put(v0)
 | |
| //	}
 | |
| type bytesFreelist [][]byte
 | |
| 
 | |
| // peek returns a slice of possibly non-zero'ed bytes, with len=0,
 | |
| // and with the largest capacity from the list.
 | |
| func (x *bytesFreelist) peek(length int, pop bool) (out []byte) {
 | |
| 	if bytesFreeListNoCache {
 | |
| 		return make([]byte, 0, freelistCapacity(length))
 | |
| 	}
 | |
| 	y := *x
 | |
| 	if len(y) > 0 {
 | |
| 		out = y[len(y)-1]
 | |
| 	}
 | |
| 	// start buf with a minimum of 64 bytes
 | |
| 	const minLenBytes = 64
 | |
| 	if length < minLenBytes {
 | |
| 		length = minLenBytes
 | |
| 	}
 | |
| 	if cap(out) < length {
 | |
| 		out = make([]byte, 0, freelistCapacity(length))
 | |
| 		y = append(y, out)
 | |
| 		*x = y
 | |
| 	}
 | |
| 	if pop && len(y) > 0 {
 | |
| 		y = y[:len(y)-1]
 | |
| 		*x = y
 | |
| 	}
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // get returns a slice of possibly non-zero'ed bytes, with len=0,
 | |
| // and with cap >= length requested.
 | |
| func (x *bytesFreelist) get(length int) (out []byte) {
 | |
| 	if bytesFreeListNoCache {
 | |
| 		return make([]byte, 0, freelistCapacity(length))
 | |
| 	}
 | |
| 	y := *x
 | |
| 	// MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta
 | |
| 	// for i, v := range y {
 | |
| 	for i := 0; i < len(y); i++ {
 | |
| 		v := y[i]
 | |
| 		if cap(v) >= length {
 | |
| 			// *x = append(y[:i], y[i+1:]...)
 | |
| 			copy(y[i:], y[i+1:])
 | |
| 			*x = y[:len(y)-1]
 | |
| 			return v
 | |
| 		}
 | |
| 	}
 | |
| 	return make([]byte, 0, freelistCapacity(length))
 | |
| }
 | |
| 
 | |
| func (x *bytesFreelist) put(v []byte) {
 | |
| 	if bytesFreeListNoCache || cap(v) == 0 {
 | |
| 		return
 | |
| 	}
 | |
| 	if len(v) != 0 {
 | |
| 		v = v[:0]
 | |
| 	}
 | |
| 	// append the new value, then try to put it in a better position
 | |
| 	y := append(*x, v)
 | |
| 	*x = y
 | |
| 	// MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta
 | |
| 	// for i, z := range y[:len(y)-1] {
 | |
| 	for i := 0; i < len(y)-1; i++ {
 | |
| 		z := y[i]
 | |
| 		if cap(z) > cap(v) {
 | |
| 			copy(y[i+1:], y[i:])
 | |
| 			y[i] = v
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (x *bytesFreelist) check(v []byte, length int) (out []byte) {
 | |
| 	// ensure inlineable, by moving slow-path out to its own function
 | |
| 	if cap(v) >= length {
 | |
| 		return v[:0]
 | |
| 	}
 | |
| 	return x.checkPutGet(v, length)
 | |
| }
 | |
| 
 | |
| func (x *bytesFreelist) checkPutGet(v []byte, length int) []byte {
 | |
| 	// checkPutGet broken out into its own function, so check is inlineable in general case
 | |
| 	const useSeparateCalls = false
 | |
| 
 | |
| 	if useSeparateCalls {
 | |
| 		x.put(v)
 | |
| 		return x.get(length)
 | |
| 	}
 | |
| 
 | |
| 	if bytesFreeListNoCache {
 | |
| 		return make([]byte, 0, freelistCapacity(length))
 | |
| 	}
 | |
| 
 | |
| 	// assume cap(v) < length, so put must happen before get
 | |
| 	y := *x
 | |
| 	var put = cap(v) == 0 // if empty, consider it already put
 | |
| 	if !put {
 | |
| 		y = append(y, v)
 | |
| 		*x = y
 | |
| 	}
 | |
| 	for i := 0; i < len(y); i++ {
 | |
| 		z := y[i]
 | |
| 		if put {
 | |
| 			if cap(z) >= length {
 | |
| 				copy(y[i:], y[i+1:])
 | |
| 				y = y[:len(y)-1]
 | |
| 				*x = y
 | |
| 				return z
 | |
| 			}
 | |
| 		} else {
 | |
| 			if cap(z) > cap(v) {
 | |
| 				copy(y[i+1:], y[i:])
 | |
| 				y[i] = v
 | |
| 				put = true
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return make([]byte, 0, freelistCapacity(length))
 | |
| }
 | |
| 
 | |
| // -------------------------
 | |
| 
 | |
| // sfiRvFreelist is used by Encoder for encoding structs,
 | |
| // where we have to gather the fields first and then
 | |
| // analyze them for omitEmpty, before knowing the length of the array/map to encode.
 | |
| //
 | |
| // Typically, the length here will depend on the number of cycles e.g.
 | |
| // if type T1 has reference to T1, or T1 has reference to type T2 which has reference to T1.
 | |
| //
 | |
| // In the general case, the length of this list at most times is 1,
 | |
| // so linear search is fine.
 | |
| type sfiRvFreelist [][]sfiRv
 | |
| 
 | |
| func (x *sfiRvFreelist) get(length int) (out []sfiRv) {
 | |
| 	y := *x
 | |
| 
 | |
| 	// MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta
 | |
| 	// for i, v := range y {
 | |
| 	for i := 0; i < len(y); i++ {
 | |
| 		v := y[i]
 | |
| 		if cap(v) >= length {
 | |
| 			// *x = append(y[:i], y[i+1:]...)
 | |
| 			copy(y[i:], y[i+1:])
 | |
| 			*x = y[:len(y)-1]
 | |
| 			return v
 | |
| 		}
 | |
| 	}
 | |
| 	return make([]sfiRv, 0, freelistCapacity(length))
 | |
| }
 | |
| 
 | |
| func (x *sfiRvFreelist) put(v []sfiRv) {
 | |
| 	if len(v) != 0 {
 | |
| 		v = v[:0]
 | |
| 	}
 | |
| 	// append the new value, then try to put it in a better position
 | |
| 	y := append(*x, v)
 | |
| 	*x = y
 | |
| 	// MARKER: do not use range, as range is not currently inlineable as of go 1.16-beta
 | |
| 	// for i, z := range y[:len(y)-1] {
 | |
| 	for i := 0; i < len(y)-1; i++ {
 | |
| 		z := y[i]
 | |
| 		if cap(z) > cap(v) {
 | |
| 			copy(y[i+1:], y[i:])
 | |
| 			y[i] = v
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // ---- multiple interner implementations ----
 | |
| 
 | |
| // Hard to tell which is most performant:
 | |
| //   - use a map[string]string - worst perf, no collisions, and unlimited entries
 | |
| //   - use a linear search with move to front heuristics - no collisions, and maxed at 64 entries
 | |
| //   - use a computationally-intensive hash - best performance, some collisions, maxed at 64 entries
 | |
| 
 | |
| const (
 | |
| 	internMaxStrLen = 16     // if more than 16 bytes, faster to copy than compare bytes
 | |
| 	internCap       = 64 * 2 // 64 uses 1K bytes RAM, so 128 (anecdotal sweet spot) uses 2K bytes
 | |
| )
 | |
| 
 | |
| type internerMap map[string]string
 | |
| 
 | |
| func (x *internerMap) init() {
 | |
| 	*x = make(map[string]string, internCap)
 | |
| }
 | |
| 
 | |
| func (x internerMap) string(v []byte) (s string) {
 | |
| 	s, ok := x[string(v)] // no allocation here, per go implementation
 | |
| 	if !ok {
 | |
| 		s = string(v) // new allocation here
 | |
| 		x[s] = s
 | |
| 	}
 | |
| 	return
 | |
| }
 |