mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-31 08:42:27 -05:00 
			
		
		
		
	* add back exif-terminator and use only for jpeg,png,webp * fix arguments passed to terminateExif() * pull in latest exif-terminator * fix test * update processed img --------- Co-authored-by: tobi <tobi.smethurst@protonmail.com>
		
			
				
	
	
		
			590 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			590 lines
		
	
	
	
		
			18 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2014 Google Inc. All rights reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| package s2
 | |
| 
 | |
| import (
 | |
| 	"fmt"
 | |
| 	"io"
 | |
| 	"sort"
 | |
| 
 | |
| 	"github.com/golang/geo/s1"
 | |
| )
 | |
| 
 | |
| // A CellUnion is a collection of CellIDs.
 | |
| //
 | |
| // It is normalized if it is sorted, and does not contain redundancy.
 | |
| // Specifically, it may not contain the same CellID twice, nor a CellID that
 | |
| // is contained by another, nor the four sibling CellIDs that are children of
 | |
| // a single higher level CellID.
 | |
| //
 | |
| // CellUnions are not required to be normalized, but certain operations will
 | |
| // return different results if they are not (e.g. Contains).
 | |
| type CellUnion []CellID
 | |
| 
 | |
| // CellUnionFromRange creates a CellUnion that covers the half-open range
 | |
| // of leaf cells [begin, end). If begin == end the resulting union is empty.
 | |
| // This requires that begin and end are both leaves, and begin <= end.
 | |
| // To create a closed-ended range, pass in end.Next().
 | |
| func CellUnionFromRange(begin, end CellID) CellUnion {
 | |
| 	// We repeatedly add the largest cell we can.
 | |
| 	var cu CellUnion
 | |
| 	for id := begin.MaxTile(end); id != end; id = id.Next().MaxTile(end) {
 | |
| 		cu = append(cu, id)
 | |
| 	}
 | |
| 	// The output is normalized because the cells are added in order by the iteration.
 | |
| 	return cu
 | |
| }
 | |
| 
 | |
| // CellUnionFromUnion creates a CellUnion from the union of the given CellUnions.
 | |
| func CellUnionFromUnion(cellUnions ...CellUnion) CellUnion {
 | |
| 	var cu CellUnion
 | |
| 	for _, cellUnion := range cellUnions {
 | |
| 		cu = append(cu, cellUnion...)
 | |
| 	}
 | |
| 	cu.Normalize()
 | |
| 	return cu
 | |
| }
 | |
| 
 | |
| // CellUnionFromIntersection creates a CellUnion from the intersection of the given CellUnions.
 | |
| func CellUnionFromIntersection(x, y CellUnion) CellUnion {
 | |
| 	var cu CellUnion
 | |
| 
 | |
| 	// This is a fairly efficient calculation that uses binary search to skip
 | |
| 	// over sections of both input vectors. It takes constant time if all the
 | |
| 	// cells of x come before or after all the cells of y in CellID order.
 | |
| 	var i, j int
 | |
| 	for i < len(x) && j < len(y) {
 | |
| 		iMin := x[i].RangeMin()
 | |
| 		jMin := y[j].RangeMin()
 | |
| 		if iMin > jMin {
 | |
| 			// Either j.Contains(i) or the two cells are disjoint.
 | |
| 			if x[i] <= y[j].RangeMax() {
 | |
| 				cu = append(cu, x[i])
 | |
| 				i++
 | |
| 			} else {
 | |
| 				// Advance j to the first cell possibly contained by x[i].
 | |
| 				j = y.lowerBound(j+1, len(y), iMin)
 | |
| 				// The previous cell y[j-1] may now contain x[i].
 | |
| 				if x[i] <= y[j-1].RangeMax() {
 | |
| 					j--
 | |
| 				}
 | |
| 			}
 | |
| 		} else if jMin > iMin {
 | |
| 			// Identical to the code above with i and j reversed.
 | |
| 			if y[j] <= x[i].RangeMax() {
 | |
| 				cu = append(cu, y[j])
 | |
| 				j++
 | |
| 			} else {
 | |
| 				i = x.lowerBound(i+1, len(x), jMin)
 | |
| 				if y[j] <= x[i-1].RangeMax() {
 | |
| 					i--
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			// i and j have the same RangeMin(), so one contains the other.
 | |
| 			if x[i] < y[j] {
 | |
| 				cu = append(cu, x[i])
 | |
| 				i++
 | |
| 			} else {
 | |
| 				cu = append(cu, y[j])
 | |
| 				j++
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// The output is generated in sorted order.
 | |
| 	cu.Normalize()
 | |
| 	return cu
 | |
| }
 | |
| 
 | |
| // CellUnionFromIntersectionWithCellID creates a CellUnion from the intersection
 | |
| // of a CellUnion with the given CellID. This can be useful for splitting a
 | |
| // CellUnion into chunks.
 | |
| func CellUnionFromIntersectionWithCellID(x CellUnion, id CellID) CellUnion {
 | |
| 	var cu CellUnion
 | |
| 	if x.ContainsCellID(id) {
 | |
| 		cu = append(cu, id)
 | |
| 		cu.Normalize()
 | |
| 		return cu
 | |
| 	}
 | |
| 
 | |
| 	idmax := id.RangeMax()
 | |
| 	for i := x.lowerBound(0, len(x), id.RangeMin()); i < len(x) && x[i] <= idmax; i++ {
 | |
| 		cu = append(cu, x[i])
 | |
| 	}
 | |
| 
 | |
| 	cu.Normalize()
 | |
| 	return cu
 | |
| }
 | |
| 
 | |
| // CellUnionFromDifference creates a CellUnion from the difference (x - y)
 | |
| // of the given CellUnions.
 | |
| func CellUnionFromDifference(x, y CellUnion) CellUnion {
 | |
| 	// TODO(roberts): This is approximately O(N*log(N)), but could probably
 | |
| 	// use similar techniques as CellUnionFromIntersectionWithCellID to be more efficient.
 | |
| 
 | |
| 	var cu CellUnion
 | |
| 	for _, xid := range x {
 | |
| 		cu.cellUnionDifferenceInternal(xid, &y)
 | |
| 	}
 | |
| 
 | |
| 	// The output is generated in sorted order, and there should not be any
 | |
| 	// cells that can be merged (provided that both inputs were normalized).
 | |
| 	return cu
 | |
| }
 | |
| 
 | |
| // The C++ constructor methods FromNormalized and FromVerbatim are not necessary
 | |
| // since they don't call Normalize, and just set the CellIDs directly on the object,
 | |
| // so straight casting is sufficient in Go to replicate this behavior.
 | |
| 
 | |
| // IsValid reports whether the cell union is valid, meaning that the CellIDs are
 | |
| // valid, non-overlapping, and sorted in increasing order.
 | |
| func (cu *CellUnion) IsValid() bool {
 | |
| 	for i, cid := range *cu {
 | |
| 		if !cid.IsValid() {
 | |
| 			return false
 | |
| 		}
 | |
| 		if i == 0 {
 | |
| 			continue
 | |
| 		}
 | |
| 		if (*cu)[i-1].RangeMax() >= cid.RangeMin() {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // IsNormalized reports whether the cell union is normalized, meaning that it is
 | |
| // satisfies IsValid and that no four cells have a common parent.
 | |
| // Certain operations such as Contains will return a different
 | |
| // result if the cell union is not normalized.
 | |
| func (cu *CellUnion) IsNormalized() bool {
 | |
| 	for i, cid := range *cu {
 | |
| 		if !cid.IsValid() {
 | |
| 			return false
 | |
| 		}
 | |
| 		if i == 0 {
 | |
| 			continue
 | |
| 		}
 | |
| 		if (*cu)[i-1].RangeMax() >= cid.RangeMin() {
 | |
| 			return false
 | |
| 		}
 | |
| 		if i < 3 {
 | |
| 			continue
 | |
| 		}
 | |
| 		if areSiblings((*cu)[i-3], (*cu)[i-2], (*cu)[i-1], cid) {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // Normalize normalizes the CellUnion.
 | |
| func (cu *CellUnion) Normalize() {
 | |
| 	sortCellIDs(*cu)
 | |
| 
 | |
| 	output := make([]CellID, 0, len(*cu)) // the list of accepted cells
 | |
| 	// Loop invariant: output is a sorted list of cells with no redundancy.
 | |
| 	for _, ci := range *cu {
 | |
| 		// The first two passes here either ignore this new candidate,
 | |
| 		// or remove previously accepted cells that are covered by this candidate.
 | |
| 
 | |
| 		// Ignore this cell if it is contained by the previous one.
 | |
| 		// We only need to check the last accepted cell. The ordering of the
 | |
| 		// cells implies containment (but not the converse), and output has no redundancy,
 | |
| 		// so if this candidate is not contained by the last accepted cell
 | |
| 		// then it cannot be contained by any previously accepted cell.
 | |
| 		if len(output) > 0 && output[len(output)-1].Contains(ci) {
 | |
| 			continue
 | |
| 		}
 | |
| 
 | |
| 		// Discard any previously accepted cells contained by this one.
 | |
| 		// This could be any contiguous trailing subsequence, but it can't be
 | |
| 		// a discontiguous subsequence because of the containment property of
 | |
| 		// sorted S2 cells mentioned above.
 | |
| 		j := len(output) - 1 // last index to keep
 | |
| 		for j >= 0 {
 | |
| 			if !ci.Contains(output[j]) {
 | |
| 				break
 | |
| 			}
 | |
| 			j--
 | |
| 		}
 | |
| 		output = output[:j+1]
 | |
| 
 | |
| 		// See if the last three cells plus this one can be collapsed.
 | |
| 		// We loop because collapsing three accepted cells and adding a higher level cell
 | |
| 		// could cascade into previously accepted cells.
 | |
| 		for len(output) >= 3 && areSiblings(output[len(output)-3], output[len(output)-2], output[len(output)-1], ci) {
 | |
| 			// Replace four children by their parent cell.
 | |
| 			output = output[:len(output)-3]
 | |
| 			ci = ci.immediateParent() // checked !ci.isFace above
 | |
| 		}
 | |
| 		output = append(output, ci)
 | |
| 	}
 | |
| 	*cu = output
 | |
| }
 | |
| 
 | |
| // IntersectsCellID reports whether this CellUnion intersects the given cell ID.
 | |
| func (cu *CellUnion) IntersectsCellID(id CellID) bool {
 | |
| 	// Find index of array item that occurs directly after our probe cell:
 | |
| 	i := sort.Search(len(*cu), func(i int) bool { return id < (*cu)[i] })
 | |
| 
 | |
| 	if i != len(*cu) && (*cu)[i].RangeMin() <= id.RangeMax() {
 | |
| 		return true
 | |
| 	}
 | |
| 	return i != 0 && (*cu)[i-1].RangeMax() >= id.RangeMin()
 | |
| }
 | |
| 
 | |
| // ContainsCellID reports whether the CellUnion contains the given cell ID.
 | |
| // Containment is defined with respect to regions, e.g. a cell contains its 4 children.
 | |
| //
 | |
| // CAVEAT: If you have constructed a non-normalized CellUnion, note that groups
 | |
| // of 4 child cells are *not* considered to contain their parent cell. To get
 | |
| // this behavior you must use one of the call Normalize() explicitly.
 | |
| func (cu *CellUnion) ContainsCellID(id CellID) bool {
 | |
| 	// Find index of array item that occurs directly after our probe cell:
 | |
| 	i := sort.Search(len(*cu), func(i int) bool { return id < (*cu)[i] })
 | |
| 
 | |
| 	if i != len(*cu) && (*cu)[i].RangeMin() <= id {
 | |
| 		return true
 | |
| 	}
 | |
| 	return i != 0 && (*cu)[i-1].RangeMax() >= id
 | |
| }
 | |
| 
 | |
| // Denormalize replaces this CellUnion with an expanded version of the
 | |
| // CellUnion where any cell whose level is less than minLevel or where
 | |
| // (level - minLevel) is not a multiple of levelMod is replaced by its
 | |
| // children, until either both of these conditions are satisfied or the
 | |
| // maximum level is reached.
 | |
| func (cu *CellUnion) Denormalize(minLevel, levelMod int) {
 | |
| 	var denorm CellUnion
 | |
| 	for _, id := range *cu {
 | |
| 		level := id.Level()
 | |
| 		newLevel := level
 | |
| 		if newLevel < minLevel {
 | |
| 			newLevel = minLevel
 | |
| 		}
 | |
| 		if levelMod > 1 {
 | |
| 			newLevel += (maxLevel - (newLevel - minLevel)) % levelMod
 | |
| 			if newLevel > maxLevel {
 | |
| 				newLevel = maxLevel
 | |
| 			}
 | |
| 		}
 | |
| 		if newLevel == level {
 | |
| 			denorm = append(denorm, id)
 | |
| 		} else {
 | |
| 			end := id.ChildEndAtLevel(newLevel)
 | |
| 			for ci := id.ChildBeginAtLevel(newLevel); ci != end; ci = ci.Next() {
 | |
| 				denorm = append(denorm, ci)
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	*cu = denorm
 | |
| }
 | |
| 
 | |
| // RectBound returns a Rect that bounds this entity.
 | |
| func (cu *CellUnion) RectBound() Rect {
 | |
| 	bound := EmptyRect()
 | |
| 	for _, c := range *cu {
 | |
| 		bound = bound.Union(CellFromCellID(c).RectBound())
 | |
| 	}
 | |
| 	return bound
 | |
| }
 | |
| 
 | |
| // CapBound returns a Cap that bounds this entity.
 | |
| func (cu *CellUnion) CapBound() Cap {
 | |
| 	if len(*cu) == 0 {
 | |
| 		return EmptyCap()
 | |
| 	}
 | |
| 
 | |
| 	// Compute the approximate centroid of the region. This won't produce the
 | |
| 	// bounding cap of minimal area, but it should be close enough.
 | |
| 	var centroid Point
 | |
| 
 | |
| 	for _, ci := range *cu {
 | |
| 		area := AvgAreaMetric.Value(ci.Level())
 | |
| 		centroid = Point{centroid.Add(ci.Point().Mul(area))}
 | |
| 	}
 | |
| 
 | |
| 	if zero := (Point{}); centroid == zero {
 | |
| 		centroid = PointFromCoords(1, 0, 0)
 | |
| 	} else {
 | |
| 		centroid = Point{centroid.Normalize()}
 | |
| 	}
 | |
| 
 | |
| 	// Use the centroid as the cap axis, and expand the cap angle so that it
 | |
| 	// contains the bounding caps of all the individual cells.  Note that it is
 | |
| 	// *not* sufficient to just bound all the cell vertices because the bounding
 | |
| 	// cap may be concave (i.e. cover more than one hemisphere).
 | |
| 	c := CapFromPoint(centroid)
 | |
| 	for _, ci := range *cu {
 | |
| 		c = c.AddCap(CellFromCellID(ci).CapBound())
 | |
| 	}
 | |
| 
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| // ContainsCell reports whether this cell union contains the given cell.
 | |
| func (cu *CellUnion) ContainsCell(c Cell) bool {
 | |
| 	return cu.ContainsCellID(c.id)
 | |
| }
 | |
| 
 | |
| // IntersectsCell reports whether this cell union intersects the given cell.
 | |
| func (cu *CellUnion) IntersectsCell(c Cell) bool {
 | |
| 	return cu.IntersectsCellID(c.id)
 | |
| }
 | |
| 
 | |
| // ContainsPoint reports whether this cell union contains the given point.
 | |
| func (cu *CellUnion) ContainsPoint(p Point) bool {
 | |
| 	return cu.ContainsCell(CellFromPoint(p))
 | |
| }
 | |
| 
 | |
| // CellUnionBound computes a covering of the CellUnion.
 | |
| func (cu *CellUnion) CellUnionBound() []CellID {
 | |
| 	return cu.CapBound().CellUnionBound()
 | |
| }
 | |
| 
 | |
| // LeafCellsCovered reports the number of leaf cells covered by this cell union.
 | |
| // This will be no more than 6*2^60 for the whole sphere.
 | |
| func (cu *CellUnion) LeafCellsCovered() int64 {
 | |
| 	var numLeaves int64
 | |
| 	for _, c := range *cu {
 | |
| 		numLeaves += 1 << uint64((maxLevel-int64(c.Level()))<<1)
 | |
| 	}
 | |
| 	return numLeaves
 | |
| }
 | |
| 
 | |
| // Returns true if the given four cells have a common parent.
 | |
| // This requires that the four CellIDs are distinct.
 | |
| func areSiblings(a, b, c, d CellID) bool {
 | |
| 	// A necessary (but not sufficient) condition is that the XOR of the
 | |
| 	// four cell IDs must be zero. This is also very fast to test.
 | |
| 	if (a ^ b ^ c) != d {
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	// Now we do a slightly more expensive but exact test. First, compute a
 | |
| 	// mask that blocks out the two bits that encode the child position of
 | |
| 	// "id" with respect to its parent, then check that the other three
 | |
| 	// children all agree with "mask".
 | |
| 	mask := d.lsb() << 1
 | |
| 	mask = ^(mask + (mask << 1))
 | |
| 	idMasked := (uint64(d) & mask)
 | |
| 	return ((uint64(a)&mask) == idMasked &&
 | |
| 		(uint64(b)&mask) == idMasked &&
 | |
| 		(uint64(c)&mask) == idMasked &&
 | |
| 		!d.isFace())
 | |
| }
 | |
| 
 | |
| // Contains reports whether this CellUnion contains all of the CellIDs of the given CellUnion.
 | |
| func (cu *CellUnion) Contains(o CellUnion) bool {
 | |
| 	// TODO(roberts): Investigate alternatives such as divide-and-conquer
 | |
| 	// or alternating-skip-search that may be significantly faster in both
 | |
| 	// the average and worst case. This applies to Intersects as well.
 | |
| 	for _, id := range o {
 | |
| 		if !cu.ContainsCellID(id) {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // Intersects reports whether this CellUnion intersects any of the CellIDs of the given CellUnion.
 | |
| func (cu *CellUnion) Intersects(o CellUnion) bool {
 | |
| 	for _, c := range *cu {
 | |
| 		if o.IntersectsCellID(c) {
 | |
| 			return true
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| // lowerBound returns the index in this CellUnion to the first element whose value
 | |
| // is not considered to go before the given cell id. (i.e., either it is equivalent
 | |
| // or comes after the given id.) If there is no match, then end is returned.
 | |
| func (cu *CellUnion) lowerBound(begin, end int, id CellID) int {
 | |
| 	for i := begin; i < end; i++ {
 | |
| 		if (*cu)[i] >= id {
 | |
| 			return i
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return end
 | |
| }
 | |
| 
 | |
| // cellUnionDifferenceInternal adds the difference between the CellID and the union to
 | |
| // the result CellUnion. If they intersect but the difference is non-empty, it divides
 | |
| // and conquers.
 | |
| func (cu *CellUnion) cellUnionDifferenceInternal(id CellID, other *CellUnion) {
 | |
| 	if !other.IntersectsCellID(id) {
 | |
| 		(*cu) = append((*cu), id)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	if !other.ContainsCellID(id) {
 | |
| 		for _, child := range id.Children() {
 | |
| 			cu.cellUnionDifferenceInternal(child, other)
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // ExpandAtLevel expands this CellUnion by adding a rim of cells at expandLevel
 | |
| // around the unions boundary.
 | |
| //
 | |
| // For each cell c in the union, we add all cells at level
 | |
| // expandLevel that abut c. There are typically eight of those
 | |
| // (four edge-abutting and four sharing a vertex). However, if c is
 | |
| // finer than expandLevel, we add all cells abutting
 | |
| // c.Parent(expandLevel) as well as c.Parent(expandLevel) itself,
 | |
| // as an expandLevel cell rarely abuts a smaller cell.
 | |
| //
 | |
| // Note that the size of the output is exponential in
 | |
| // expandLevel. For example, if expandLevel == 20 and the input
 | |
| // has a cell at level 10, there will be on the order of 4000
 | |
| // adjacent cells in the output. For most applications the
 | |
| // ExpandByRadius method below is easier to use.
 | |
| func (cu *CellUnion) ExpandAtLevel(level int) {
 | |
| 	var output CellUnion
 | |
| 	levelLsb := lsbForLevel(level)
 | |
| 	for i := len(*cu) - 1; i >= 0; i-- {
 | |
| 		id := (*cu)[i]
 | |
| 		if id.lsb() < levelLsb {
 | |
| 			id = id.Parent(level)
 | |
| 			// Optimization: skip over any cells contained by this one. This is
 | |
| 			// especially important when very small regions are being expanded.
 | |
| 			for i > 0 && id.Contains((*cu)[i-1]) {
 | |
| 				i--
 | |
| 			}
 | |
| 		}
 | |
| 		output = append(output, id)
 | |
| 		output = append(output, id.AllNeighbors(level)...)
 | |
| 	}
 | |
| 	sortCellIDs(output)
 | |
| 
 | |
| 	*cu = output
 | |
| 	cu.Normalize()
 | |
| }
 | |
| 
 | |
| // ExpandByRadius expands this CellUnion such that it contains all points whose
 | |
| // distance to the CellUnion is at most minRadius, but do not use cells that
 | |
| // are more than maxLevelDiff levels higher than the largest cell in the input.
 | |
| // The second parameter controls the tradeoff between accuracy and output size
 | |
| // when a large region is being expanded by a small amount (e.g. expanding Canada
 | |
| // by 1km). For example, if maxLevelDiff == 4 the region will always be expanded
 | |
| // by approximately 1/16 the width of its largest cell. Note that in the worst case,
 | |
| // the number of cells in the output can be up to 4 * (1 + 2 ** maxLevelDiff) times
 | |
| // larger than the number of cells in the input.
 | |
| func (cu *CellUnion) ExpandByRadius(minRadius s1.Angle, maxLevelDiff int) {
 | |
| 	minLevel := maxLevel
 | |
| 	for _, cid := range *cu {
 | |
| 		minLevel = minInt(minLevel, cid.Level())
 | |
| 	}
 | |
| 
 | |
| 	// Find the maximum level such that all cells are at least "minRadius" wide.
 | |
| 	radiusLevel := MinWidthMetric.MaxLevel(minRadius.Radians())
 | |
| 	if radiusLevel == 0 && minRadius.Radians() > MinWidthMetric.Value(0) {
 | |
| 		// The requested expansion is greater than the width of a face cell.
 | |
| 		// The easiest way to handle this is to expand twice.
 | |
| 		cu.ExpandAtLevel(0)
 | |
| 	}
 | |
| 	cu.ExpandAtLevel(minInt(minLevel+maxLevelDiff, radiusLevel))
 | |
| }
 | |
| 
 | |
| // Equal reports whether the two CellUnions are equal.
 | |
| func (cu CellUnion) Equal(o CellUnion) bool {
 | |
| 	if len(cu) != len(o) {
 | |
| 		return false
 | |
| 	}
 | |
| 	for i := 0; i < len(cu); i++ {
 | |
| 		if cu[i] != o[i] {
 | |
| 			return false
 | |
| 		}
 | |
| 	}
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // AverageArea returns the average area of this CellUnion.
 | |
| // This is accurate to within a factor of 1.7.
 | |
| func (cu *CellUnion) AverageArea() float64 {
 | |
| 	return AvgAreaMetric.Value(maxLevel) * float64(cu.LeafCellsCovered())
 | |
| }
 | |
| 
 | |
| // ApproxArea returns the approximate area of this CellUnion. This method is accurate
 | |
| // to within 3% percent for all cell sizes and accurate to within 0.1% for cells
 | |
| // at level 5 or higher within the union.
 | |
| func (cu *CellUnion) ApproxArea() float64 {
 | |
| 	var area float64
 | |
| 	for _, id := range *cu {
 | |
| 		area += CellFromCellID(id).ApproxArea()
 | |
| 	}
 | |
| 	return area
 | |
| }
 | |
| 
 | |
| // ExactArea returns the area of this CellUnion as accurately as possible.
 | |
| func (cu *CellUnion) ExactArea() float64 {
 | |
| 	var area float64
 | |
| 	for _, id := range *cu {
 | |
| 		area += CellFromCellID(id).ExactArea()
 | |
| 	}
 | |
| 	return area
 | |
| }
 | |
| 
 | |
| // Encode encodes the CellUnion.
 | |
| func (cu *CellUnion) Encode(w io.Writer) error {
 | |
| 	e := &encoder{w: w}
 | |
| 	cu.encode(e)
 | |
| 	return e.err
 | |
| }
 | |
| 
 | |
| func (cu *CellUnion) encode(e *encoder) {
 | |
| 	e.writeInt8(encodingVersion)
 | |
| 	e.writeInt64(int64(len(*cu)))
 | |
| 	for _, ci := range *cu {
 | |
| 		ci.encode(e)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Decode decodes the CellUnion.
 | |
| func (cu *CellUnion) Decode(r io.Reader) error {
 | |
| 	d := &decoder{r: asByteReader(r)}
 | |
| 	cu.decode(d)
 | |
| 	return d.err
 | |
| }
 | |
| 
 | |
| func (cu *CellUnion) decode(d *decoder) {
 | |
| 	version := d.readInt8()
 | |
| 	if d.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	if version != encodingVersion {
 | |
| 		d.err = fmt.Errorf("only version %d is supported", encodingVersion)
 | |
| 		return
 | |
| 	}
 | |
| 	n := d.readInt64()
 | |
| 	if d.err != nil {
 | |
| 		return
 | |
| 	}
 | |
| 	const maxCells = 1000000
 | |
| 	if n > maxCells {
 | |
| 		d.err = fmt.Errorf("too many cells (%d; max is %d)", n, maxCells)
 | |
| 		return
 | |
| 	}
 | |
| 	*cu = make([]CellID, n)
 | |
| 	for i := range *cu {
 | |
| 		(*cu)[i].decode(d)
 | |
| 	}
 | |
| }
 |