mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-11-01 01:02:26 -05:00 
			
		
		
		
	* start fixing up tests * fix up tests + automate with drone * fiddle with linting * messing about with drone.yml * some more fiddling * hmmm * add cache * add vendor directory * verbose * ci updates * update some little things * update sig
		
			
				
	
	
		
			101 lines
		
	
	
	
		
			3.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			101 lines
		
	
	
	
		
			3.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2014 Google Inc. All rights reserved.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
package s2
 | 
						|
 | 
						|
import (
 | 
						|
	"fmt"
 | 
						|
	"math"
 | 
						|
 | 
						|
	"github.com/golang/geo/r3"
 | 
						|
	"github.com/golang/geo/s1"
 | 
						|
)
 | 
						|
 | 
						|
const (
 | 
						|
	northPoleLat = s1.Angle(math.Pi/2) * s1.Radian
 | 
						|
	southPoleLat = -northPoleLat
 | 
						|
)
 | 
						|
 | 
						|
// LatLng represents a point on the unit sphere as a pair of angles.
 | 
						|
type LatLng struct {
 | 
						|
	Lat, Lng s1.Angle
 | 
						|
}
 | 
						|
 | 
						|
// LatLngFromDegrees returns a LatLng for the coordinates given in degrees.
 | 
						|
func LatLngFromDegrees(lat, lng float64) LatLng {
 | 
						|
	return LatLng{s1.Angle(lat) * s1.Degree, s1.Angle(lng) * s1.Degree}
 | 
						|
}
 | 
						|
 | 
						|
// IsValid returns true iff the LatLng is normalized, with Lat ∈ [-π/2,π/2] and Lng ∈ [-π,π].
 | 
						|
func (ll LatLng) IsValid() bool {
 | 
						|
	return math.Abs(ll.Lat.Radians()) <= math.Pi/2 && math.Abs(ll.Lng.Radians()) <= math.Pi
 | 
						|
}
 | 
						|
 | 
						|
// Normalized returns the normalized version of the LatLng,
 | 
						|
// with Lat clamped to [-π/2,π/2] and Lng wrapped in [-π,π].
 | 
						|
func (ll LatLng) Normalized() LatLng {
 | 
						|
	lat := ll.Lat
 | 
						|
	if lat > northPoleLat {
 | 
						|
		lat = northPoleLat
 | 
						|
	} else if lat < southPoleLat {
 | 
						|
		lat = southPoleLat
 | 
						|
	}
 | 
						|
	lng := s1.Angle(math.Remainder(ll.Lng.Radians(), 2*math.Pi)) * s1.Radian
 | 
						|
	return LatLng{lat, lng}
 | 
						|
}
 | 
						|
 | 
						|
func (ll LatLng) String() string { return fmt.Sprintf("[%v, %v]", ll.Lat, ll.Lng) }
 | 
						|
 | 
						|
// Distance returns the angle between two LatLngs.
 | 
						|
func (ll LatLng) Distance(ll2 LatLng) s1.Angle {
 | 
						|
	// Haversine formula, as used in C++ S2LatLng::GetDistance.
 | 
						|
	lat1, lat2 := ll.Lat.Radians(), ll2.Lat.Radians()
 | 
						|
	lng1, lng2 := ll.Lng.Radians(), ll2.Lng.Radians()
 | 
						|
	dlat := math.Sin(0.5 * (lat2 - lat1))
 | 
						|
	dlng := math.Sin(0.5 * (lng2 - lng1))
 | 
						|
	x := dlat*dlat + dlng*dlng*math.Cos(lat1)*math.Cos(lat2)
 | 
						|
	return s1.Angle(2*math.Atan2(math.Sqrt(x), math.Sqrt(math.Max(0, 1-x)))) * s1.Radian
 | 
						|
}
 | 
						|
 | 
						|
// NOTE(mikeperrow): The C++ implementation publicly exposes latitude/longitude
 | 
						|
// functions. Let's see if that's really necessary before exposing the same functionality.
 | 
						|
 | 
						|
func latitude(p Point) s1.Angle {
 | 
						|
	return s1.Angle(math.Atan2(p.Z, math.Sqrt(p.X*p.X+p.Y*p.Y))) * s1.Radian
 | 
						|
}
 | 
						|
 | 
						|
func longitude(p Point) s1.Angle {
 | 
						|
	return s1.Angle(math.Atan2(p.Y, p.X)) * s1.Radian
 | 
						|
}
 | 
						|
 | 
						|
// PointFromLatLng returns an Point for the given LatLng.
 | 
						|
// The maximum error in the result is 1.5 * dblEpsilon. (This does not
 | 
						|
// include the error of converting degrees, E5, E6, or E7 into radians.)
 | 
						|
func PointFromLatLng(ll LatLng) Point {
 | 
						|
	phi := ll.Lat.Radians()
 | 
						|
	theta := ll.Lng.Radians()
 | 
						|
	cosphi := math.Cos(phi)
 | 
						|
	return Point{r3.Vector{math.Cos(theta) * cosphi, math.Sin(theta) * cosphi, math.Sin(phi)}}
 | 
						|
}
 | 
						|
 | 
						|
// LatLngFromPoint returns an LatLng for a given Point.
 | 
						|
func LatLngFromPoint(p Point) LatLng {
 | 
						|
	return LatLng{latitude(p), longitude(p)}
 | 
						|
}
 | 
						|
 | 
						|
// ApproxEqual reports whether the latitude and longitude of the two LatLngs
 | 
						|
// are the same up to a small tolerance.
 | 
						|
func (ll LatLng) ApproxEqual(other LatLng) bool {
 | 
						|
	return ll.Lat.ApproxEqual(other.Lat) && ll.Lng.ApproxEqual(other.Lng)
 | 
						|
}
 |