mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-31 07:32:26 -05:00 
			
		
		
		
	Bumps [golang.org/x/crypto](https://github.com/golang/crypto) from 0.36.0 to 0.37.0. - [Commits](https://github.com/golang/crypto/compare/v0.36.0...v0.37.0) --- updated-dependencies: - dependency-name: golang.org/x/crypto dependency-version: 0.37.0 dependency-type: direct:production update-type: version-update:semver-minor ... Signed-off-by: dependabot[bot] <support@github.com> Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
		
			
				
	
	
		
			842 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			842 lines
		
	
	
	
		
			23 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2013 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package ssh
 | |
| 
 | |
| import (
 | |
| 	"errors"
 | |
| 	"fmt"
 | |
| 	"io"
 | |
| 	"log"
 | |
| 	"net"
 | |
| 	"strings"
 | |
| 	"sync"
 | |
| )
 | |
| 
 | |
| // debugHandshake, if set, prints messages sent and received.  Key
 | |
| // exchange messages are printed as if DH were used, so the debug
 | |
| // messages are wrong when using ECDH.
 | |
| const debugHandshake = false
 | |
| 
 | |
| // chanSize sets the amount of buffering SSH connections. This is
 | |
| // primarily for testing: setting chanSize=0 uncovers deadlocks more
 | |
| // quickly.
 | |
| const chanSize = 16
 | |
| 
 | |
| // maxPendingPackets sets the maximum number of packets to queue while waiting
 | |
| // for KEX to complete. This limits the total pending data to maxPendingPackets
 | |
| // * maxPacket bytes, which is ~16.8MB.
 | |
| const maxPendingPackets = 64
 | |
| 
 | |
| // keyingTransport is a packet based transport that supports key
 | |
| // changes. It need not be thread-safe. It should pass through
 | |
| // msgNewKeys in both directions.
 | |
| type keyingTransport interface {
 | |
| 	packetConn
 | |
| 
 | |
| 	// prepareKeyChange sets up a key change. The key change for a
 | |
| 	// direction will be effected if a msgNewKeys message is sent
 | |
| 	// or received.
 | |
| 	prepareKeyChange(*algorithms, *kexResult) error
 | |
| 
 | |
| 	// setStrictMode sets the strict KEX mode, notably triggering
 | |
| 	// sequence number resets on sending or receiving msgNewKeys.
 | |
| 	// If the sequence number is already > 1 when setStrictMode
 | |
| 	// is called, an error is returned.
 | |
| 	setStrictMode() error
 | |
| 
 | |
| 	// setInitialKEXDone indicates to the transport that the initial key exchange
 | |
| 	// was completed
 | |
| 	setInitialKEXDone()
 | |
| }
 | |
| 
 | |
| // handshakeTransport implements rekeying on top of a keyingTransport
 | |
| // and offers a thread-safe writePacket() interface.
 | |
| type handshakeTransport struct {
 | |
| 	conn   keyingTransport
 | |
| 	config *Config
 | |
| 
 | |
| 	serverVersion []byte
 | |
| 	clientVersion []byte
 | |
| 
 | |
| 	// hostKeys is non-empty if we are the server. In that case,
 | |
| 	// it contains all host keys that can be used to sign the
 | |
| 	// connection.
 | |
| 	hostKeys []Signer
 | |
| 
 | |
| 	// publicKeyAuthAlgorithms is non-empty if we are the server. In that case,
 | |
| 	// it contains the supported client public key authentication algorithms.
 | |
| 	publicKeyAuthAlgorithms []string
 | |
| 
 | |
| 	// hostKeyAlgorithms is non-empty if we are the client. In that case,
 | |
| 	// we accept these key types from the server as host key.
 | |
| 	hostKeyAlgorithms []string
 | |
| 
 | |
| 	// On read error, incoming is closed, and readError is set.
 | |
| 	incoming  chan []byte
 | |
| 	readError error
 | |
| 
 | |
| 	mu sync.Mutex
 | |
| 	// Condition for the above mutex. It is used to notify a completed key
 | |
| 	// exchange or a write failure. Writes can wait for this condition while a
 | |
| 	// key exchange is in progress.
 | |
| 	writeCond      *sync.Cond
 | |
| 	writeError     error
 | |
| 	sentInitPacket []byte
 | |
| 	sentInitMsg    *kexInitMsg
 | |
| 	// Used to queue writes when a key exchange is in progress. The length is
 | |
| 	// limited by pendingPacketsSize. Once full, writes will block until the key
 | |
| 	// exchange is completed or an error occurs. If not empty, it is emptied
 | |
| 	// all at once when the key exchange is completed in kexLoop.
 | |
| 	pendingPackets   [][]byte
 | |
| 	writePacketsLeft uint32
 | |
| 	writeBytesLeft   int64
 | |
| 	userAuthComplete bool // whether the user authentication phase is complete
 | |
| 
 | |
| 	// If the read loop wants to schedule a kex, it pings this
 | |
| 	// channel, and the write loop will send out a kex
 | |
| 	// message.
 | |
| 	requestKex chan struct{}
 | |
| 
 | |
| 	// If the other side requests or confirms a kex, its kexInit
 | |
| 	// packet is sent here for the write loop to find it.
 | |
| 	startKex    chan *pendingKex
 | |
| 	kexLoopDone chan struct{} // closed (with writeError non-nil) when kexLoop exits
 | |
| 
 | |
| 	// data for host key checking
 | |
| 	hostKeyCallback HostKeyCallback
 | |
| 	dialAddress     string
 | |
| 	remoteAddr      net.Addr
 | |
| 
 | |
| 	// bannerCallback is non-empty if we are the client and it has been set in
 | |
| 	// ClientConfig. In that case it is called during the user authentication
 | |
| 	// dance to handle a custom server's message.
 | |
| 	bannerCallback BannerCallback
 | |
| 
 | |
| 	// Algorithms agreed in the last key exchange.
 | |
| 	algorithms *algorithms
 | |
| 
 | |
| 	// Counters exclusively owned by readLoop.
 | |
| 	readPacketsLeft uint32
 | |
| 	readBytesLeft   int64
 | |
| 
 | |
| 	// The session ID or nil if first kex did not complete yet.
 | |
| 	sessionID []byte
 | |
| 
 | |
| 	// strictMode indicates if the other side of the handshake indicated
 | |
| 	// that we should be following the strict KEX protocol restrictions.
 | |
| 	strictMode bool
 | |
| }
 | |
| 
 | |
| type pendingKex struct {
 | |
| 	otherInit []byte
 | |
| 	done      chan error
 | |
| }
 | |
| 
 | |
| func newHandshakeTransport(conn keyingTransport, config *Config, clientVersion, serverVersion []byte) *handshakeTransport {
 | |
| 	t := &handshakeTransport{
 | |
| 		conn:          conn,
 | |
| 		serverVersion: serverVersion,
 | |
| 		clientVersion: clientVersion,
 | |
| 		incoming:      make(chan []byte, chanSize),
 | |
| 		requestKex:    make(chan struct{}, 1),
 | |
| 		startKex:      make(chan *pendingKex),
 | |
| 		kexLoopDone:   make(chan struct{}),
 | |
| 
 | |
| 		config: config,
 | |
| 	}
 | |
| 	t.writeCond = sync.NewCond(&t.mu)
 | |
| 	t.resetReadThresholds()
 | |
| 	t.resetWriteThresholds()
 | |
| 
 | |
| 	// We always start with a mandatory key exchange.
 | |
| 	t.requestKex <- struct{}{}
 | |
| 	return t
 | |
| }
 | |
| 
 | |
| func newClientTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ClientConfig, dialAddr string, addr net.Addr) *handshakeTransport {
 | |
| 	t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
 | |
| 	t.dialAddress = dialAddr
 | |
| 	t.remoteAddr = addr
 | |
| 	t.hostKeyCallback = config.HostKeyCallback
 | |
| 	t.bannerCallback = config.BannerCallback
 | |
| 	if config.HostKeyAlgorithms != nil {
 | |
| 		t.hostKeyAlgorithms = config.HostKeyAlgorithms
 | |
| 	} else {
 | |
| 		t.hostKeyAlgorithms = supportedHostKeyAlgos
 | |
| 	}
 | |
| 	go t.readLoop()
 | |
| 	go t.kexLoop()
 | |
| 	return t
 | |
| }
 | |
| 
 | |
| func newServerTransport(conn keyingTransport, clientVersion, serverVersion []byte, config *ServerConfig) *handshakeTransport {
 | |
| 	t := newHandshakeTransport(conn, &config.Config, clientVersion, serverVersion)
 | |
| 	t.hostKeys = config.hostKeys
 | |
| 	t.publicKeyAuthAlgorithms = config.PublicKeyAuthAlgorithms
 | |
| 	go t.readLoop()
 | |
| 	go t.kexLoop()
 | |
| 	return t
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) getSessionID() []byte {
 | |
| 	return t.sessionID
 | |
| }
 | |
| 
 | |
| // waitSession waits for the session to be established. This should be
 | |
| // the first thing to call after instantiating handshakeTransport.
 | |
| func (t *handshakeTransport) waitSession() error {
 | |
| 	p, err := t.readPacket()
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	if p[0] != msgNewKeys {
 | |
| 		return fmt.Errorf("ssh: first packet should be msgNewKeys")
 | |
| 	}
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) id() string {
 | |
| 	if len(t.hostKeys) > 0 {
 | |
| 		return "server"
 | |
| 	}
 | |
| 	return "client"
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) printPacket(p []byte, write bool) {
 | |
| 	action := "got"
 | |
| 	if write {
 | |
| 		action = "sent"
 | |
| 	}
 | |
| 
 | |
| 	if p[0] == msgChannelData || p[0] == msgChannelExtendedData {
 | |
| 		log.Printf("%s %s data (packet %d bytes)", t.id(), action, len(p))
 | |
| 	} else {
 | |
| 		msg, err := decode(p)
 | |
| 		log.Printf("%s %s %T %v (%v)", t.id(), action, msg, msg, err)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) readPacket() ([]byte, error) {
 | |
| 	p, ok := <-t.incoming
 | |
| 	if !ok {
 | |
| 		return nil, t.readError
 | |
| 	}
 | |
| 	return p, nil
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) readLoop() {
 | |
| 	first := true
 | |
| 	for {
 | |
| 		p, err := t.readOnePacket(first)
 | |
| 		first = false
 | |
| 		if err != nil {
 | |
| 			t.readError = err
 | |
| 			close(t.incoming)
 | |
| 			break
 | |
| 		}
 | |
| 		// If this is the first kex, and strict KEX mode is enabled,
 | |
| 		// we don't ignore any messages, as they may be used to manipulate
 | |
| 		// the packet sequence numbers.
 | |
| 		if !(t.sessionID == nil && t.strictMode) && (p[0] == msgIgnore || p[0] == msgDebug) {
 | |
| 			continue
 | |
| 		}
 | |
| 		t.incoming <- p
 | |
| 	}
 | |
| 
 | |
| 	// Stop writers too.
 | |
| 	t.recordWriteError(t.readError)
 | |
| 
 | |
| 	// Unblock the writer should it wait for this.
 | |
| 	close(t.startKex)
 | |
| 
 | |
| 	// Don't close t.requestKex; it's also written to from writePacket.
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) pushPacket(p []byte) error {
 | |
| 	if debugHandshake {
 | |
| 		t.printPacket(p, true)
 | |
| 	}
 | |
| 	return t.conn.writePacket(p)
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) getWriteError() error {
 | |
| 	t.mu.Lock()
 | |
| 	defer t.mu.Unlock()
 | |
| 	return t.writeError
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) recordWriteError(err error) {
 | |
| 	t.mu.Lock()
 | |
| 	defer t.mu.Unlock()
 | |
| 	if t.writeError == nil && err != nil {
 | |
| 		t.writeError = err
 | |
| 		t.writeCond.Broadcast()
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) requestKeyExchange() {
 | |
| 	select {
 | |
| 	case t.requestKex <- struct{}{}:
 | |
| 	default:
 | |
| 		// something already requested a kex, so do nothing.
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) resetWriteThresholds() {
 | |
| 	t.writePacketsLeft = packetRekeyThreshold
 | |
| 	if t.config.RekeyThreshold > 0 {
 | |
| 		t.writeBytesLeft = int64(t.config.RekeyThreshold)
 | |
| 	} else if t.algorithms != nil {
 | |
| 		t.writeBytesLeft = t.algorithms.w.rekeyBytes()
 | |
| 	} else {
 | |
| 		t.writeBytesLeft = 1 << 30
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) kexLoop() {
 | |
| 
 | |
| write:
 | |
| 	for t.getWriteError() == nil {
 | |
| 		var request *pendingKex
 | |
| 		var sent bool
 | |
| 
 | |
| 		for request == nil || !sent {
 | |
| 			var ok bool
 | |
| 			select {
 | |
| 			case request, ok = <-t.startKex:
 | |
| 				if !ok {
 | |
| 					break write
 | |
| 				}
 | |
| 			case <-t.requestKex:
 | |
| 				break
 | |
| 			}
 | |
| 
 | |
| 			if !sent {
 | |
| 				if err := t.sendKexInit(); err != nil {
 | |
| 					t.recordWriteError(err)
 | |
| 					break
 | |
| 				}
 | |
| 				sent = true
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if err := t.getWriteError(); err != nil {
 | |
| 			if request != nil {
 | |
| 				request.done <- err
 | |
| 			}
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		// We're not servicing t.requestKex, but that is OK:
 | |
| 		// we never block on sending to t.requestKex.
 | |
| 
 | |
| 		// We're not servicing t.startKex, but the remote end
 | |
| 		// has just sent us a kexInitMsg, so it can't send
 | |
| 		// another key change request, until we close the done
 | |
| 		// channel on the pendingKex request.
 | |
| 
 | |
| 		err := t.enterKeyExchange(request.otherInit)
 | |
| 
 | |
| 		t.mu.Lock()
 | |
| 		t.writeError = err
 | |
| 		t.sentInitPacket = nil
 | |
| 		t.sentInitMsg = nil
 | |
| 
 | |
| 		t.resetWriteThresholds()
 | |
| 
 | |
| 		// we have completed the key exchange. Since the
 | |
| 		// reader is still blocked, it is safe to clear out
 | |
| 		// the requestKex channel. This avoids the situation
 | |
| 		// where: 1) we consumed our own request for the
 | |
| 		// initial kex, and 2) the kex from the remote side
 | |
| 		// caused another send on the requestKex channel,
 | |
| 	clear:
 | |
| 		for {
 | |
| 			select {
 | |
| 			case <-t.requestKex:
 | |
| 				//
 | |
| 			default:
 | |
| 				break clear
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		request.done <- t.writeError
 | |
| 
 | |
| 		// kex finished. Push packets that we received while
 | |
| 		// the kex was in progress. Don't look at t.startKex
 | |
| 		// and don't increment writtenSinceKex: if we trigger
 | |
| 		// another kex while we are still busy with the last
 | |
| 		// one, things will become very confusing.
 | |
| 		for _, p := range t.pendingPackets {
 | |
| 			t.writeError = t.pushPacket(p)
 | |
| 			if t.writeError != nil {
 | |
| 				break
 | |
| 			}
 | |
| 		}
 | |
| 		t.pendingPackets = t.pendingPackets[:0]
 | |
| 		// Unblock writePacket if waiting for KEX.
 | |
| 		t.writeCond.Broadcast()
 | |
| 		t.mu.Unlock()
 | |
| 	}
 | |
| 
 | |
| 	// Unblock reader.
 | |
| 	t.conn.Close()
 | |
| 
 | |
| 	// drain startKex channel. We don't service t.requestKex
 | |
| 	// because nobody does blocking sends there.
 | |
| 	for request := range t.startKex {
 | |
| 		request.done <- t.getWriteError()
 | |
| 	}
 | |
| 
 | |
| 	// Mark that the loop is done so that Close can return.
 | |
| 	close(t.kexLoopDone)
 | |
| }
 | |
| 
 | |
| // The protocol uses uint32 for packet counters, so we can't let them
 | |
| // reach 1<<32.  We will actually read and write more packets than
 | |
| // this, though: the other side may send more packets, and after we
 | |
| // hit this limit on writing we will send a few more packets for the
 | |
| // key exchange itself.
 | |
| const packetRekeyThreshold = (1 << 31)
 | |
| 
 | |
| func (t *handshakeTransport) resetReadThresholds() {
 | |
| 	t.readPacketsLeft = packetRekeyThreshold
 | |
| 	if t.config.RekeyThreshold > 0 {
 | |
| 		t.readBytesLeft = int64(t.config.RekeyThreshold)
 | |
| 	} else if t.algorithms != nil {
 | |
| 		t.readBytesLeft = t.algorithms.r.rekeyBytes()
 | |
| 	} else {
 | |
| 		t.readBytesLeft = 1 << 30
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) readOnePacket(first bool) ([]byte, error) {
 | |
| 	p, err := t.conn.readPacket()
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	if t.readPacketsLeft > 0 {
 | |
| 		t.readPacketsLeft--
 | |
| 	} else {
 | |
| 		t.requestKeyExchange()
 | |
| 	}
 | |
| 
 | |
| 	if t.readBytesLeft > 0 {
 | |
| 		t.readBytesLeft -= int64(len(p))
 | |
| 	} else {
 | |
| 		t.requestKeyExchange()
 | |
| 	}
 | |
| 
 | |
| 	if debugHandshake {
 | |
| 		t.printPacket(p, false)
 | |
| 	}
 | |
| 
 | |
| 	if first && p[0] != msgKexInit {
 | |
| 		return nil, fmt.Errorf("ssh: first packet should be msgKexInit")
 | |
| 	}
 | |
| 
 | |
| 	if p[0] != msgKexInit {
 | |
| 		return p, nil
 | |
| 	}
 | |
| 
 | |
| 	firstKex := t.sessionID == nil
 | |
| 
 | |
| 	kex := pendingKex{
 | |
| 		done:      make(chan error, 1),
 | |
| 		otherInit: p,
 | |
| 	}
 | |
| 	t.startKex <- &kex
 | |
| 	err = <-kex.done
 | |
| 
 | |
| 	if debugHandshake {
 | |
| 		log.Printf("%s exited key exchange (first %v), err %v", t.id(), firstKex, err)
 | |
| 	}
 | |
| 
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	t.resetReadThresholds()
 | |
| 
 | |
| 	// By default, a key exchange is hidden from higher layers by
 | |
| 	// translating it into msgIgnore.
 | |
| 	successPacket := []byte{msgIgnore}
 | |
| 	if firstKex {
 | |
| 		// sendKexInit() for the first kex waits for
 | |
| 		// msgNewKeys so the authentication process is
 | |
| 		// guaranteed to happen over an encrypted transport.
 | |
| 		successPacket = []byte{msgNewKeys}
 | |
| 	}
 | |
| 
 | |
| 	return successPacket, nil
 | |
| }
 | |
| 
 | |
| const (
 | |
| 	kexStrictClient = "kex-strict-c-v00@openssh.com"
 | |
| 	kexStrictServer = "kex-strict-s-v00@openssh.com"
 | |
| )
 | |
| 
 | |
| // sendKexInit sends a key change message.
 | |
| func (t *handshakeTransport) sendKexInit() error {
 | |
| 	t.mu.Lock()
 | |
| 	defer t.mu.Unlock()
 | |
| 	if t.sentInitMsg != nil {
 | |
| 		// kexInits may be sent either in response to the other side,
 | |
| 		// or because our side wants to initiate a key change, so we
 | |
| 		// may have already sent a kexInit. In that case, don't send a
 | |
| 		// second kexInit.
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	msg := &kexInitMsg{
 | |
| 		CiphersClientServer:     t.config.Ciphers,
 | |
| 		CiphersServerClient:     t.config.Ciphers,
 | |
| 		MACsClientServer:        t.config.MACs,
 | |
| 		MACsServerClient:        t.config.MACs,
 | |
| 		CompressionClientServer: supportedCompressions,
 | |
| 		CompressionServerClient: supportedCompressions,
 | |
| 	}
 | |
| 	io.ReadFull(t.config.Rand, msg.Cookie[:])
 | |
| 
 | |
| 	// We mutate the KexAlgos slice, in order to add the kex-strict extension algorithm,
 | |
| 	// and possibly to add the ext-info extension algorithm. Since the slice may be the
 | |
| 	// user owned KeyExchanges, we create our own slice in order to avoid using user
 | |
| 	// owned memory by mistake.
 | |
| 	msg.KexAlgos = make([]string, 0, len(t.config.KeyExchanges)+2) // room for kex-strict and ext-info
 | |
| 	msg.KexAlgos = append(msg.KexAlgos, t.config.KeyExchanges...)
 | |
| 
 | |
| 	isServer := len(t.hostKeys) > 0
 | |
| 	if isServer {
 | |
| 		for _, k := range t.hostKeys {
 | |
| 			// If k is a MultiAlgorithmSigner, we restrict the signature
 | |
| 			// algorithms. If k is a AlgorithmSigner, presume it supports all
 | |
| 			// signature algorithms associated with the key format. If k is not
 | |
| 			// an AlgorithmSigner, we can only assume it only supports the
 | |
| 			// algorithms that matches the key format. (This means that Sign
 | |
| 			// can't pick a different default).
 | |
| 			keyFormat := k.PublicKey().Type()
 | |
| 
 | |
| 			switch s := k.(type) {
 | |
| 			case MultiAlgorithmSigner:
 | |
| 				for _, algo := range algorithmsForKeyFormat(keyFormat) {
 | |
| 					if contains(s.Algorithms(), underlyingAlgo(algo)) {
 | |
| 						msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, algo)
 | |
| 					}
 | |
| 				}
 | |
| 			case AlgorithmSigner:
 | |
| 				msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, algorithmsForKeyFormat(keyFormat)...)
 | |
| 			default:
 | |
| 				msg.ServerHostKeyAlgos = append(msg.ServerHostKeyAlgos, keyFormat)
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if t.sessionID == nil {
 | |
| 			msg.KexAlgos = append(msg.KexAlgos, kexStrictServer)
 | |
| 		}
 | |
| 	} else {
 | |
| 		msg.ServerHostKeyAlgos = t.hostKeyAlgorithms
 | |
| 
 | |
| 		// As a client we opt in to receiving SSH_MSG_EXT_INFO so we know what
 | |
| 		// algorithms the server supports for public key authentication. See RFC
 | |
| 		// 8308, Section 2.1.
 | |
| 		//
 | |
| 		// We also send the strict KEX mode extension algorithm, in order to opt
 | |
| 		// into the strict KEX mode.
 | |
| 		if firstKeyExchange := t.sessionID == nil; firstKeyExchange {
 | |
| 			msg.KexAlgos = append(msg.KexAlgos, "ext-info-c")
 | |
| 			msg.KexAlgos = append(msg.KexAlgos, kexStrictClient)
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	packet := Marshal(msg)
 | |
| 
 | |
| 	// writePacket destroys the contents, so save a copy.
 | |
| 	packetCopy := make([]byte, len(packet))
 | |
| 	copy(packetCopy, packet)
 | |
| 
 | |
| 	if err := t.pushPacket(packetCopy); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	t.sentInitMsg = msg
 | |
| 	t.sentInitPacket = packet
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| var errSendBannerPhase = errors.New("ssh: SendAuthBanner outside of authentication phase")
 | |
| 
 | |
| func (t *handshakeTransport) writePacket(p []byte) error {
 | |
| 	t.mu.Lock()
 | |
| 	defer t.mu.Unlock()
 | |
| 
 | |
| 	switch p[0] {
 | |
| 	case msgKexInit:
 | |
| 		return errors.New("ssh: only handshakeTransport can send kexInit")
 | |
| 	case msgNewKeys:
 | |
| 		return errors.New("ssh: only handshakeTransport can send newKeys")
 | |
| 	case msgUserAuthBanner:
 | |
| 		if t.userAuthComplete {
 | |
| 			return errSendBannerPhase
 | |
| 		}
 | |
| 	case msgUserAuthSuccess:
 | |
| 		t.userAuthComplete = true
 | |
| 	}
 | |
| 
 | |
| 	if t.writeError != nil {
 | |
| 		return t.writeError
 | |
| 	}
 | |
| 
 | |
| 	if t.sentInitMsg != nil {
 | |
| 		if len(t.pendingPackets) < maxPendingPackets {
 | |
| 			// Copy the packet so the writer can reuse the buffer.
 | |
| 			cp := make([]byte, len(p))
 | |
| 			copy(cp, p)
 | |
| 			t.pendingPackets = append(t.pendingPackets, cp)
 | |
| 			return nil
 | |
| 		}
 | |
| 		for t.sentInitMsg != nil {
 | |
| 			// Block and wait for KEX to complete or an error.
 | |
| 			t.writeCond.Wait()
 | |
| 			if t.writeError != nil {
 | |
| 				return t.writeError
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if t.writeBytesLeft > 0 {
 | |
| 		t.writeBytesLeft -= int64(len(p))
 | |
| 	} else {
 | |
| 		t.requestKeyExchange()
 | |
| 	}
 | |
| 
 | |
| 	if t.writePacketsLeft > 0 {
 | |
| 		t.writePacketsLeft--
 | |
| 	} else {
 | |
| 		t.requestKeyExchange()
 | |
| 	}
 | |
| 
 | |
| 	if err := t.pushPacket(p); err != nil {
 | |
| 		t.writeError = err
 | |
| 		t.writeCond.Broadcast()
 | |
| 	}
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) Close() error {
 | |
| 	// Close the connection. This should cause the readLoop goroutine to wake up
 | |
| 	// and close t.startKex, which will shut down kexLoop if running.
 | |
| 	err := t.conn.Close()
 | |
| 
 | |
| 	// Wait for the kexLoop goroutine to complete.
 | |
| 	// At that point we know that the readLoop goroutine is complete too,
 | |
| 	// because kexLoop itself waits for readLoop to close the startKex channel.
 | |
| 	<-t.kexLoopDone
 | |
| 
 | |
| 	return err
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) enterKeyExchange(otherInitPacket []byte) error {
 | |
| 	if debugHandshake {
 | |
| 		log.Printf("%s entered key exchange", t.id())
 | |
| 	}
 | |
| 
 | |
| 	otherInit := &kexInitMsg{}
 | |
| 	if err := Unmarshal(otherInitPacket, otherInit); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	magics := handshakeMagics{
 | |
| 		clientVersion: t.clientVersion,
 | |
| 		serverVersion: t.serverVersion,
 | |
| 		clientKexInit: otherInitPacket,
 | |
| 		serverKexInit: t.sentInitPacket,
 | |
| 	}
 | |
| 
 | |
| 	clientInit := otherInit
 | |
| 	serverInit := t.sentInitMsg
 | |
| 	isClient := len(t.hostKeys) == 0
 | |
| 	if isClient {
 | |
| 		clientInit, serverInit = serverInit, clientInit
 | |
| 
 | |
| 		magics.clientKexInit = t.sentInitPacket
 | |
| 		magics.serverKexInit = otherInitPacket
 | |
| 	}
 | |
| 
 | |
| 	var err error
 | |
| 	t.algorithms, err = findAgreedAlgorithms(isClient, clientInit, serverInit)
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	if t.sessionID == nil && ((isClient && contains(serverInit.KexAlgos, kexStrictServer)) || (!isClient && contains(clientInit.KexAlgos, kexStrictClient))) {
 | |
| 		t.strictMode = true
 | |
| 		if err := t.conn.setStrictMode(); err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// We don't send FirstKexFollows, but we handle receiving it.
 | |
| 	//
 | |
| 	// RFC 4253 section 7 defines the kex and the agreement method for
 | |
| 	// first_kex_packet_follows. It states that the guessed packet
 | |
| 	// should be ignored if the "kex algorithm and/or the host
 | |
| 	// key algorithm is guessed wrong (server and client have
 | |
| 	// different preferred algorithm), or if any of the other
 | |
| 	// algorithms cannot be agreed upon". The other algorithms have
 | |
| 	// already been checked above so the kex algorithm and host key
 | |
| 	// algorithm are checked here.
 | |
| 	if otherInit.FirstKexFollows && (clientInit.KexAlgos[0] != serverInit.KexAlgos[0] || clientInit.ServerHostKeyAlgos[0] != serverInit.ServerHostKeyAlgos[0]) {
 | |
| 		// other side sent a kex message for the wrong algorithm,
 | |
| 		// which we have to ignore.
 | |
| 		if _, err := t.conn.readPacket(); err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kex, ok := kexAlgoMap[t.algorithms.kex]
 | |
| 	if !ok {
 | |
| 		return fmt.Errorf("ssh: unexpected key exchange algorithm %v", t.algorithms.kex)
 | |
| 	}
 | |
| 
 | |
| 	var result *kexResult
 | |
| 	if len(t.hostKeys) > 0 {
 | |
| 		result, err = t.server(kex, &magics)
 | |
| 	} else {
 | |
| 		result, err = t.client(kex, &magics)
 | |
| 	}
 | |
| 
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	firstKeyExchange := t.sessionID == nil
 | |
| 	if firstKeyExchange {
 | |
| 		t.sessionID = result.H
 | |
| 	}
 | |
| 	result.SessionID = t.sessionID
 | |
| 
 | |
| 	if err := t.conn.prepareKeyChange(t.algorithms, result); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	if err = t.conn.writePacket([]byte{msgNewKeys}); err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 
 | |
| 	// On the server side, after the first SSH_MSG_NEWKEYS, send a SSH_MSG_EXT_INFO
 | |
| 	// message with the server-sig-algs extension if the client supports it. See
 | |
| 	// RFC 8308, Sections 2.4 and 3.1, and [PROTOCOL], Section 1.9.
 | |
| 	if !isClient && firstKeyExchange && contains(clientInit.KexAlgos, "ext-info-c") {
 | |
| 		supportedPubKeyAuthAlgosList := strings.Join(t.publicKeyAuthAlgorithms, ",")
 | |
| 		extInfo := &extInfoMsg{
 | |
| 			NumExtensions: 2,
 | |
| 			Payload:       make([]byte, 0, 4+15+4+len(supportedPubKeyAuthAlgosList)+4+16+4+1),
 | |
| 		}
 | |
| 		extInfo.Payload = appendInt(extInfo.Payload, len("server-sig-algs"))
 | |
| 		extInfo.Payload = append(extInfo.Payload, "server-sig-algs"...)
 | |
| 		extInfo.Payload = appendInt(extInfo.Payload, len(supportedPubKeyAuthAlgosList))
 | |
| 		extInfo.Payload = append(extInfo.Payload, supportedPubKeyAuthAlgosList...)
 | |
| 		extInfo.Payload = appendInt(extInfo.Payload, len("ping@openssh.com"))
 | |
| 		extInfo.Payload = append(extInfo.Payload, "ping@openssh.com"...)
 | |
| 		extInfo.Payload = appendInt(extInfo.Payload, 1)
 | |
| 		extInfo.Payload = append(extInfo.Payload, "0"...)
 | |
| 		if err := t.conn.writePacket(Marshal(extInfo)); err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if packet, err := t.conn.readPacket(); err != nil {
 | |
| 		return err
 | |
| 	} else if packet[0] != msgNewKeys {
 | |
| 		return unexpectedMessageError(msgNewKeys, packet[0])
 | |
| 	}
 | |
| 
 | |
| 	if firstKeyExchange {
 | |
| 		// Indicates to the transport that the first key exchange is completed
 | |
| 		// after receiving SSH_MSG_NEWKEYS.
 | |
| 		t.conn.setInitialKEXDone()
 | |
| 	}
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // algorithmSignerWrapper is an AlgorithmSigner that only supports the default
 | |
| // key format algorithm.
 | |
| //
 | |
| // This is technically a violation of the AlgorithmSigner interface, but it
 | |
| // should be unreachable given where we use this. Anyway, at least it returns an
 | |
| // error instead of panicing or producing an incorrect signature.
 | |
| type algorithmSignerWrapper struct {
 | |
| 	Signer
 | |
| }
 | |
| 
 | |
| func (a algorithmSignerWrapper) SignWithAlgorithm(rand io.Reader, data []byte, algorithm string) (*Signature, error) {
 | |
| 	if algorithm != underlyingAlgo(a.PublicKey().Type()) {
 | |
| 		return nil, errors.New("ssh: internal error: algorithmSignerWrapper invoked with non-default algorithm")
 | |
| 	}
 | |
| 	return a.Sign(rand, data)
 | |
| }
 | |
| 
 | |
| func pickHostKey(hostKeys []Signer, algo string) AlgorithmSigner {
 | |
| 	for _, k := range hostKeys {
 | |
| 		if s, ok := k.(MultiAlgorithmSigner); ok {
 | |
| 			if !contains(s.Algorithms(), underlyingAlgo(algo)) {
 | |
| 				continue
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if algo == k.PublicKey().Type() {
 | |
| 			return algorithmSignerWrapper{k}
 | |
| 		}
 | |
| 
 | |
| 		k, ok := k.(AlgorithmSigner)
 | |
| 		if !ok {
 | |
| 			continue
 | |
| 		}
 | |
| 		for _, a := range algorithmsForKeyFormat(k.PublicKey().Type()) {
 | |
| 			if algo == a {
 | |
| 				return k
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) server(kex kexAlgorithm, magics *handshakeMagics) (*kexResult, error) {
 | |
| 	hostKey := pickHostKey(t.hostKeys, t.algorithms.hostKey)
 | |
| 	if hostKey == nil {
 | |
| 		return nil, errors.New("ssh: internal error: negotiated unsupported signature type")
 | |
| 	}
 | |
| 
 | |
| 	r, err := kex.Server(t.conn, t.config.Rand, magics, hostKey, t.algorithms.hostKey)
 | |
| 	return r, err
 | |
| }
 | |
| 
 | |
| func (t *handshakeTransport) client(kex kexAlgorithm, magics *handshakeMagics) (*kexResult, error) {
 | |
| 	result, err := kex.Client(t.conn, t.config.Rand, magics)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	hostKey, err := ParsePublicKey(result.HostKey)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	if err := verifyHostKeySignature(hostKey, t.algorithms.hostKey, result); err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	err = t.hostKeyCallback(t.dialAddress, t.remoteAddr, hostKey)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 
 | |
| 	return result, nil
 | |
| }
 |