mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-29 04:22:24 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			829 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			829 lines
		
	
	
	
		
			21 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // Package flate implements the DEFLATE compressed data format, described in
 | |
| // RFC 1951.  The gzip and zlib packages implement access to DEFLATE-based file
 | |
| // formats.
 | |
| package flate
 | |
| 
 | |
| import (
 | |
| 	"bufio"
 | |
| 	"compress/flate"
 | |
| 	"fmt"
 | |
| 	"io"
 | |
| 	"math/bits"
 | |
| 	"sync"
 | |
| )
 | |
| 
 | |
| const (
 | |
| 	maxCodeLen     = 16 // max length of Huffman code
 | |
| 	maxCodeLenMask = 15 // mask for max length of Huffman code
 | |
| 	// The next three numbers come from the RFC section 3.2.7, with the
 | |
| 	// additional proviso in section 3.2.5 which implies that distance codes
 | |
| 	// 30 and 31 should never occur in compressed data.
 | |
| 	maxNumLit  = 286
 | |
| 	maxNumDist = 30
 | |
| 	numCodes   = 19 // number of codes in Huffman meta-code
 | |
| 
 | |
| 	debugDecode = false
 | |
| )
 | |
| 
 | |
| // Value of length - 3 and extra bits.
 | |
| type lengthExtra struct {
 | |
| 	length, extra uint8
 | |
| }
 | |
| 
 | |
| var decCodeToLen = [32]lengthExtra{{length: 0x0, extra: 0x0}, {length: 0x1, extra: 0x0}, {length: 0x2, extra: 0x0}, {length: 0x3, extra: 0x0}, {length: 0x4, extra: 0x0}, {length: 0x5, extra: 0x0}, {length: 0x6, extra: 0x0}, {length: 0x7, extra: 0x0}, {length: 0x8, extra: 0x1}, {length: 0xa, extra: 0x1}, {length: 0xc, extra: 0x1}, {length: 0xe, extra: 0x1}, {length: 0x10, extra: 0x2}, {length: 0x14, extra: 0x2}, {length: 0x18, extra: 0x2}, {length: 0x1c, extra: 0x2}, {length: 0x20, extra: 0x3}, {length: 0x28, extra: 0x3}, {length: 0x30, extra: 0x3}, {length: 0x38, extra: 0x3}, {length: 0x40, extra: 0x4}, {length: 0x50, extra: 0x4}, {length: 0x60, extra: 0x4}, {length: 0x70, extra: 0x4}, {length: 0x80, extra: 0x5}, {length: 0xa0, extra: 0x5}, {length: 0xc0, extra: 0x5}, {length: 0xe0, extra: 0x5}, {length: 0xff, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}, {length: 0x0, extra: 0x0}}
 | |
| 
 | |
| var bitMask32 = [32]uint32{
 | |
| 	0, 1, 3, 7, 0xF, 0x1F, 0x3F, 0x7F, 0xFF,
 | |
| 	0x1FF, 0x3FF, 0x7FF, 0xFFF, 0x1FFF, 0x3FFF, 0x7FFF, 0xFFFF,
 | |
| 	0x1ffff, 0x3ffff, 0x7FFFF, 0xfFFFF, 0x1fFFFF, 0x3fFFFF, 0x7fFFFF, 0xffFFFF,
 | |
| 	0x1ffFFFF, 0x3ffFFFF, 0x7ffFFFF, 0xfffFFFF, 0x1fffFFFF, 0x3fffFFFF, 0x7fffFFFF,
 | |
| } // up to 32 bits
 | |
| 
 | |
| // Initialize the fixedHuffmanDecoder only once upon first use.
 | |
| var fixedOnce sync.Once
 | |
| var fixedHuffmanDecoder huffmanDecoder
 | |
| 
 | |
| // A CorruptInputError reports the presence of corrupt input at a given offset.
 | |
| type CorruptInputError = flate.CorruptInputError
 | |
| 
 | |
| // An InternalError reports an error in the flate code itself.
 | |
| type InternalError string
 | |
| 
 | |
| func (e InternalError) Error() string { return "flate: internal error: " + string(e) }
 | |
| 
 | |
| // A ReadError reports an error encountered while reading input.
 | |
| //
 | |
| // Deprecated: No longer returned.
 | |
| type ReadError = flate.ReadError
 | |
| 
 | |
| // A WriteError reports an error encountered while writing output.
 | |
| //
 | |
| // Deprecated: No longer returned.
 | |
| type WriteError = flate.WriteError
 | |
| 
 | |
| // Resetter resets a ReadCloser returned by NewReader or NewReaderDict to
 | |
| // to switch to a new underlying Reader. This permits reusing a ReadCloser
 | |
| // instead of allocating a new one.
 | |
| type Resetter interface {
 | |
| 	// Reset discards any buffered data and resets the Resetter as if it was
 | |
| 	// newly initialized with the given reader.
 | |
| 	Reset(r io.Reader, dict []byte) error
 | |
| }
 | |
| 
 | |
| // The data structure for decoding Huffman tables is based on that of
 | |
| // zlib. There is a lookup table of a fixed bit width (huffmanChunkBits),
 | |
| // For codes smaller than the table width, there are multiple entries
 | |
| // (each combination of trailing bits has the same value). For codes
 | |
| // larger than the table width, the table contains a link to an overflow
 | |
| // table. The width of each entry in the link table is the maximum code
 | |
| // size minus the chunk width.
 | |
| //
 | |
| // Note that you can do a lookup in the table even without all bits
 | |
| // filled. Since the extra bits are zero, and the DEFLATE Huffman codes
 | |
| // have the property that shorter codes come before longer ones, the
 | |
| // bit length estimate in the result is a lower bound on the actual
 | |
| // number of bits.
 | |
| //
 | |
| // See the following:
 | |
| //	http://www.gzip.org/algorithm.txt
 | |
| 
 | |
| // chunk & 15 is number of bits
 | |
| // chunk >> 4 is value, including table link
 | |
| 
 | |
| const (
 | |
| 	huffmanChunkBits  = 9
 | |
| 	huffmanNumChunks  = 1 << huffmanChunkBits
 | |
| 	huffmanCountMask  = 15
 | |
| 	huffmanValueShift = 4
 | |
| )
 | |
| 
 | |
| type huffmanDecoder struct {
 | |
| 	maxRead  int                       // the maximum number of bits we can read and not overread
 | |
| 	chunks   *[huffmanNumChunks]uint16 // chunks as described above
 | |
| 	links    [][]uint16                // overflow links
 | |
| 	linkMask uint32                    // mask the width of the link table
 | |
| }
 | |
| 
 | |
| // Initialize Huffman decoding tables from array of code lengths.
 | |
| // Following this function, h is guaranteed to be initialized into a complete
 | |
| // tree (i.e., neither over-subscribed nor under-subscribed). The exception is a
 | |
| // degenerate case where the tree has only a single symbol with length 1. Empty
 | |
| // trees are permitted.
 | |
| func (h *huffmanDecoder) init(lengths []int) bool {
 | |
| 	// Sanity enables additional runtime tests during Huffman
 | |
| 	// table construction. It's intended to be used during
 | |
| 	// development to supplement the currently ad-hoc unit tests.
 | |
| 	const sanity = false
 | |
| 
 | |
| 	if h.chunks == nil {
 | |
| 		h.chunks = new([huffmanNumChunks]uint16)
 | |
| 	}
 | |
| 
 | |
| 	if h.maxRead != 0 {
 | |
| 		*h = huffmanDecoder{chunks: h.chunks, links: h.links}
 | |
| 	}
 | |
| 
 | |
| 	// Count number of codes of each length,
 | |
| 	// compute maxRead and max length.
 | |
| 	var count [maxCodeLen]int
 | |
| 	var min, max int
 | |
| 	for _, n := range lengths {
 | |
| 		if n == 0 {
 | |
| 			continue
 | |
| 		}
 | |
| 		if min == 0 || n < min {
 | |
| 			min = n
 | |
| 		}
 | |
| 		if n > max {
 | |
| 			max = n
 | |
| 		}
 | |
| 		count[n&maxCodeLenMask]++
 | |
| 	}
 | |
| 
 | |
| 	// Empty tree. The decompressor.huffSym function will fail later if the tree
 | |
| 	// is used. Technically, an empty tree is only valid for the HDIST tree and
 | |
| 	// not the HCLEN and HLIT tree. However, a stream with an empty HCLEN tree
 | |
| 	// is guaranteed to fail since it will attempt to use the tree to decode the
 | |
| 	// codes for the HLIT and HDIST trees. Similarly, an empty HLIT tree is
 | |
| 	// guaranteed to fail later since the compressed data section must be
 | |
| 	// composed of at least one symbol (the end-of-block marker).
 | |
| 	if max == 0 {
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| 	code := 0
 | |
| 	var nextcode [maxCodeLen]int
 | |
| 	for i := min; i <= max; i++ {
 | |
| 		code <<= 1
 | |
| 		nextcode[i&maxCodeLenMask] = code
 | |
| 		code += count[i&maxCodeLenMask]
 | |
| 	}
 | |
| 
 | |
| 	// Check that the coding is complete (i.e., that we've
 | |
| 	// assigned all 2-to-the-max possible bit sequences).
 | |
| 	// Exception: To be compatible with zlib, we also need to
 | |
| 	// accept degenerate single-code codings. See also
 | |
| 	// TestDegenerateHuffmanCoding.
 | |
| 	if code != 1<<uint(max) && !(code == 1 && max == 1) {
 | |
| 		if debugDecode {
 | |
| 			fmt.Println("coding failed, code, max:", code, max, code == 1<<uint(max), code == 1 && max == 1, "(one should be true)")
 | |
| 		}
 | |
| 		return false
 | |
| 	}
 | |
| 
 | |
| 	h.maxRead = min
 | |
| 
 | |
| 	chunks := h.chunks[:]
 | |
| 	for i := range chunks {
 | |
| 		chunks[i] = 0
 | |
| 	}
 | |
| 
 | |
| 	if max > huffmanChunkBits {
 | |
| 		numLinks := 1 << (uint(max) - huffmanChunkBits)
 | |
| 		h.linkMask = uint32(numLinks - 1)
 | |
| 
 | |
| 		// create link tables
 | |
| 		link := nextcode[huffmanChunkBits+1] >> 1
 | |
| 		if cap(h.links) < huffmanNumChunks-link {
 | |
| 			h.links = make([][]uint16, huffmanNumChunks-link)
 | |
| 		} else {
 | |
| 			h.links = h.links[:huffmanNumChunks-link]
 | |
| 		}
 | |
| 		for j := uint(link); j < huffmanNumChunks; j++ {
 | |
| 			reverse := int(bits.Reverse16(uint16(j)))
 | |
| 			reverse >>= uint(16 - huffmanChunkBits)
 | |
| 			off := j - uint(link)
 | |
| 			if sanity && h.chunks[reverse] != 0 {
 | |
| 				panic("impossible: overwriting existing chunk")
 | |
| 			}
 | |
| 			h.chunks[reverse] = uint16(off<<huffmanValueShift | (huffmanChunkBits + 1))
 | |
| 			if cap(h.links[off]) < numLinks {
 | |
| 				h.links[off] = make([]uint16, numLinks)
 | |
| 			} else {
 | |
| 				h.links[off] = h.links[off][:numLinks]
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		h.links = h.links[:0]
 | |
| 	}
 | |
| 
 | |
| 	for i, n := range lengths {
 | |
| 		if n == 0 {
 | |
| 			continue
 | |
| 		}
 | |
| 		code := nextcode[n]
 | |
| 		nextcode[n]++
 | |
| 		chunk := uint16(i<<huffmanValueShift | n)
 | |
| 		reverse := int(bits.Reverse16(uint16(code)))
 | |
| 		reverse >>= uint(16 - n)
 | |
| 		if n <= huffmanChunkBits {
 | |
| 			for off := reverse; off < len(h.chunks); off += 1 << uint(n) {
 | |
| 				// We should never need to overwrite
 | |
| 				// an existing chunk. Also, 0 is
 | |
| 				// never a valid chunk, because the
 | |
| 				// lower 4 "count" bits should be
 | |
| 				// between 1 and 15.
 | |
| 				if sanity && h.chunks[off] != 0 {
 | |
| 					panic("impossible: overwriting existing chunk")
 | |
| 				}
 | |
| 				h.chunks[off] = chunk
 | |
| 			}
 | |
| 		} else {
 | |
| 			j := reverse & (huffmanNumChunks - 1)
 | |
| 			if sanity && h.chunks[j]&huffmanCountMask != huffmanChunkBits+1 {
 | |
| 				// Longer codes should have been
 | |
| 				// associated with a link table above.
 | |
| 				panic("impossible: not an indirect chunk")
 | |
| 			}
 | |
| 			value := h.chunks[j] >> huffmanValueShift
 | |
| 			linktab := h.links[value]
 | |
| 			reverse >>= huffmanChunkBits
 | |
| 			for off := reverse; off < len(linktab); off += 1 << uint(n-huffmanChunkBits) {
 | |
| 				if sanity && linktab[off] != 0 {
 | |
| 					panic("impossible: overwriting existing chunk")
 | |
| 				}
 | |
| 				linktab[off] = chunk
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if sanity {
 | |
| 		// Above we've sanity checked that we never overwrote
 | |
| 		// an existing entry. Here we additionally check that
 | |
| 		// we filled the tables completely.
 | |
| 		for i, chunk := range h.chunks {
 | |
| 			if chunk == 0 {
 | |
| 				// As an exception, in the degenerate
 | |
| 				// single-code case, we allow odd
 | |
| 				// chunks to be missing.
 | |
| 				if code == 1 && i%2 == 1 {
 | |
| 					continue
 | |
| 				}
 | |
| 				panic("impossible: missing chunk")
 | |
| 			}
 | |
| 		}
 | |
| 		for _, linktab := range h.links {
 | |
| 			for _, chunk := range linktab {
 | |
| 				if chunk == 0 {
 | |
| 					panic("impossible: missing chunk")
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| // Reader is the actual read interface needed by NewReader.
 | |
| // If the passed in io.Reader does not also have ReadByte,
 | |
| // the NewReader will introduce its own buffering.
 | |
| type Reader interface {
 | |
| 	io.Reader
 | |
| 	io.ByteReader
 | |
| }
 | |
| 
 | |
| type step uint8
 | |
| 
 | |
| const (
 | |
| 	copyData step = iota + 1
 | |
| 	nextBlock
 | |
| 	huffmanBytesBuffer
 | |
| 	huffmanBytesReader
 | |
| 	huffmanBufioReader
 | |
| 	huffmanStringsReader
 | |
| 	huffmanGenericReader
 | |
| )
 | |
| 
 | |
| // Decompress state.
 | |
| type decompressor struct {
 | |
| 	// Input source.
 | |
| 	r       Reader
 | |
| 	roffset int64
 | |
| 
 | |
| 	// Huffman decoders for literal/length, distance.
 | |
| 	h1, h2 huffmanDecoder
 | |
| 
 | |
| 	// Length arrays used to define Huffman codes.
 | |
| 	bits     *[maxNumLit + maxNumDist]int
 | |
| 	codebits *[numCodes]int
 | |
| 
 | |
| 	// Output history, buffer.
 | |
| 	dict dictDecoder
 | |
| 
 | |
| 	// Next step in the decompression,
 | |
| 	// and decompression state.
 | |
| 	step      step
 | |
| 	stepState int
 | |
| 	err       error
 | |
| 	toRead    []byte
 | |
| 	hl, hd    *huffmanDecoder
 | |
| 	copyLen   int
 | |
| 	copyDist  int
 | |
| 
 | |
| 	// Temporary buffer (avoids repeated allocation).
 | |
| 	buf [4]byte
 | |
| 
 | |
| 	// Input bits, in top of b.
 | |
| 	b uint32
 | |
| 
 | |
| 	nb    uint
 | |
| 	final bool
 | |
| }
 | |
| 
 | |
| func (f *decompressor) nextBlock() {
 | |
| 	for f.nb < 1+2 {
 | |
| 		if f.err = f.moreBits(); f.err != nil {
 | |
| 			return
 | |
| 		}
 | |
| 	}
 | |
| 	f.final = f.b&1 == 1
 | |
| 	f.b >>= 1
 | |
| 	typ := f.b & 3
 | |
| 	f.b >>= 2
 | |
| 	f.nb -= 1 + 2
 | |
| 	switch typ {
 | |
| 	case 0:
 | |
| 		f.dataBlock()
 | |
| 		if debugDecode {
 | |
| 			fmt.Println("stored block")
 | |
| 		}
 | |
| 	case 1:
 | |
| 		// compressed, fixed Huffman tables
 | |
| 		f.hl = &fixedHuffmanDecoder
 | |
| 		f.hd = nil
 | |
| 		f.huffmanBlockDecoder()
 | |
| 		if debugDecode {
 | |
| 			fmt.Println("predefinied huffman block")
 | |
| 		}
 | |
| 	case 2:
 | |
| 		// compressed, dynamic Huffman tables
 | |
| 		if f.err = f.readHuffman(); f.err != nil {
 | |
| 			break
 | |
| 		}
 | |
| 		f.hl = &f.h1
 | |
| 		f.hd = &f.h2
 | |
| 		f.huffmanBlockDecoder()
 | |
| 		if debugDecode {
 | |
| 			fmt.Println("dynamic huffman block")
 | |
| 		}
 | |
| 	default:
 | |
| 		// 3 is reserved.
 | |
| 		if debugDecode {
 | |
| 			fmt.Println("reserved data block encountered")
 | |
| 		}
 | |
| 		f.err = CorruptInputError(f.roffset)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (f *decompressor) Read(b []byte) (int, error) {
 | |
| 	for {
 | |
| 		if len(f.toRead) > 0 {
 | |
| 			n := copy(b, f.toRead)
 | |
| 			f.toRead = f.toRead[n:]
 | |
| 			if len(f.toRead) == 0 {
 | |
| 				return n, f.err
 | |
| 			}
 | |
| 			return n, nil
 | |
| 		}
 | |
| 		if f.err != nil {
 | |
| 			return 0, f.err
 | |
| 		}
 | |
| 
 | |
| 		f.doStep()
 | |
| 
 | |
| 		if f.err != nil && len(f.toRead) == 0 {
 | |
| 			f.toRead = f.dict.readFlush() // Flush what's left in case of error
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // WriteTo implements the io.WriteTo interface for io.Copy and friends.
 | |
| func (f *decompressor) WriteTo(w io.Writer) (int64, error) {
 | |
| 	total := int64(0)
 | |
| 	flushed := false
 | |
| 	for {
 | |
| 		if len(f.toRead) > 0 {
 | |
| 			n, err := w.Write(f.toRead)
 | |
| 			total += int64(n)
 | |
| 			if err != nil {
 | |
| 				f.err = err
 | |
| 				return total, err
 | |
| 			}
 | |
| 			if n != len(f.toRead) {
 | |
| 				return total, io.ErrShortWrite
 | |
| 			}
 | |
| 			f.toRead = f.toRead[:0]
 | |
| 		}
 | |
| 		if f.err != nil && flushed {
 | |
| 			if f.err == io.EOF {
 | |
| 				return total, nil
 | |
| 			}
 | |
| 			return total, f.err
 | |
| 		}
 | |
| 		if f.err == nil {
 | |
| 			f.doStep()
 | |
| 		}
 | |
| 		if len(f.toRead) == 0 && f.err != nil && !flushed {
 | |
| 			f.toRead = f.dict.readFlush() // Flush what's left in case of error
 | |
| 			flushed = true
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (f *decompressor) Close() error {
 | |
| 	if f.err == io.EOF {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return f.err
 | |
| }
 | |
| 
 | |
| // RFC 1951 section 3.2.7.
 | |
| // Compression with dynamic Huffman codes
 | |
| 
 | |
| var codeOrder = [...]int{16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}
 | |
| 
 | |
| func (f *decompressor) readHuffman() error {
 | |
| 	// HLIT[5], HDIST[5], HCLEN[4].
 | |
| 	for f.nb < 5+5+4 {
 | |
| 		if err := f.moreBits(); err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 	}
 | |
| 	nlit := int(f.b&0x1F) + 257
 | |
| 	if nlit > maxNumLit {
 | |
| 		if debugDecode {
 | |
| 			fmt.Println("nlit > maxNumLit", nlit)
 | |
| 		}
 | |
| 		return CorruptInputError(f.roffset)
 | |
| 	}
 | |
| 	f.b >>= 5
 | |
| 	ndist := int(f.b&0x1F) + 1
 | |
| 	if ndist > maxNumDist {
 | |
| 		if debugDecode {
 | |
| 			fmt.Println("ndist > maxNumDist", ndist)
 | |
| 		}
 | |
| 		return CorruptInputError(f.roffset)
 | |
| 	}
 | |
| 	f.b >>= 5
 | |
| 	nclen := int(f.b&0xF) + 4
 | |
| 	// numCodes is 19, so nclen is always valid.
 | |
| 	f.b >>= 4
 | |
| 	f.nb -= 5 + 5 + 4
 | |
| 
 | |
| 	// (HCLEN+4)*3 bits: code lengths in the magic codeOrder order.
 | |
| 	for i := 0; i < nclen; i++ {
 | |
| 		for f.nb < 3 {
 | |
| 			if err := f.moreBits(); err != nil {
 | |
| 				return err
 | |
| 			}
 | |
| 		}
 | |
| 		f.codebits[codeOrder[i]] = int(f.b & 0x7)
 | |
| 		f.b >>= 3
 | |
| 		f.nb -= 3
 | |
| 	}
 | |
| 	for i := nclen; i < len(codeOrder); i++ {
 | |
| 		f.codebits[codeOrder[i]] = 0
 | |
| 	}
 | |
| 	if !f.h1.init(f.codebits[0:]) {
 | |
| 		if debugDecode {
 | |
| 			fmt.Println("init codebits failed")
 | |
| 		}
 | |
| 		return CorruptInputError(f.roffset)
 | |
| 	}
 | |
| 
 | |
| 	// HLIT + 257 code lengths, HDIST + 1 code lengths,
 | |
| 	// using the code length Huffman code.
 | |
| 	for i, n := 0, nlit+ndist; i < n; {
 | |
| 		x, err := f.huffSym(&f.h1)
 | |
| 		if err != nil {
 | |
| 			return err
 | |
| 		}
 | |
| 		if x < 16 {
 | |
| 			// Actual length.
 | |
| 			f.bits[i] = x
 | |
| 			i++
 | |
| 			continue
 | |
| 		}
 | |
| 		// Repeat previous length or zero.
 | |
| 		var rep int
 | |
| 		var nb uint
 | |
| 		var b int
 | |
| 		switch x {
 | |
| 		default:
 | |
| 			return InternalError("unexpected length code")
 | |
| 		case 16:
 | |
| 			rep = 3
 | |
| 			nb = 2
 | |
| 			if i == 0 {
 | |
| 				if debugDecode {
 | |
| 					fmt.Println("i==0")
 | |
| 				}
 | |
| 				return CorruptInputError(f.roffset)
 | |
| 			}
 | |
| 			b = f.bits[i-1]
 | |
| 		case 17:
 | |
| 			rep = 3
 | |
| 			nb = 3
 | |
| 			b = 0
 | |
| 		case 18:
 | |
| 			rep = 11
 | |
| 			nb = 7
 | |
| 			b = 0
 | |
| 		}
 | |
| 		for f.nb < nb {
 | |
| 			if err := f.moreBits(); err != nil {
 | |
| 				if debugDecode {
 | |
| 					fmt.Println("morebits:", err)
 | |
| 				}
 | |
| 				return err
 | |
| 			}
 | |
| 		}
 | |
| 		rep += int(f.b & uint32(1<<(nb®SizeMaskUint32)-1))
 | |
| 		f.b >>= nb & regSizeMaskUint32
 | |
| 		f.nb -= nb
 | |
| 		if i+rep > n {
 | |
| 			if debugDecode {
 | |
| 				fmt.Println("i+rep > n", i, rep, n)
 | |
| 			}
 | |
| 			return CorruptInputError(f.roffset)
 | |
| 		}
 | |
| 		for j := 0; j < rep; j++ {
 | |
| 			f.bits[i] = b
 | |
| 			i++
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if !f.h1.init(f.bits[0:nlit]) || !f.h2.init(f.bits[nlit:nlit+ndist]) {
 | |
| 		if debugDecode {
 | |
| 			fmt.Println("init2 failed")
 | |
| 		}
 | |
| 		return CorruptInputError(f.roffset)
 | |
| 	}
 | |
| 
 | |
| 	// As an optimization, we can initialize the maxRead bits to read at a time
 | |
| 	// for the HLIT tree to the length of the EOB marker since we know that
 | |
| 	// every block must terminate with one. This preserves the property that
 | |
| 	// we never read any extra bytes after the end of the DEFLATE stream.
 | |
| 	if f.h1.maxRead < f.bits[endBlockMarker] {
 | |
| 		f.h1.maxRead = f.bits[endBlockMarker]
 | |
| 	}
 | |
| 	if !f.final {
 | |
| 		// If not the final block, the smallest block possible is
 | |
| 		// a predefined table, BTYPE=01, with a single EOB marker.
 | |
| 		// This will take up 3 + 7 bits.
 | |
| 		f.h1.maxRead += 10
 | |
| 	}
 | |
| 
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // Copy a single uncompressed data block from input to output.
 | |
| func (f *decompressor) dataBlock() {
 | |
| 	// Uncompressed.
 | |
| 	// Discard current half-byte.
 | |
| 	left := (f.nb) & 7
 | |
| 	f.nb -= left
 | |
| 	f.b >>= left
 | |
| 
 | |
| 	offBytes := f.nb >> 3
 | |
| 	// Unfilled values will be overwritten.
 | |
| 	f.buf[0] = uint8(f.b)
 | |
| 	f.buf[1] = uint8(f.b >> 8)
 | |
| 	f.buf[2] = uint8(f.b >> 16)
 | |
| 	f.buf[3] = uint8(f.b >> 24)
 | |
| 
 | |
| 	f.roffset += int64(offBytes)
 | |
| 	f.nb, f.b = 0, 0
 | |
| 
 | |
| 	// Length then ones-complement of length.
 | |
| 	nr, err := io.ReadFull(f.r, f.buf[offBytes:4])
 | |
| 	f.roffset += int64(nr)
 | |
| 	if err != nil {
 | |
| 		f.err = noEOF(err)
 | |
| 		return
 | |
| 	}
 | |
| 	n := uint16(f.buf[0]) | uint16(f.buf[1])<<8
 | |
| 	nn := uint16(f.buf[2]) | uint16(f.buf[3])<<8
 | |
| 	if nn != ^n {
 | |
| 		if debugDecode {
 | |
| 			ncomp := ^n
 | |
| 			fmt.Println("uint16(nn) != uint16(^n)", nn, ncomp)
 | |
| 		}
 | |
| 		f.err = CorruptInputError(f.roffset)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	if n == 0 {
 | |
| 		f.toRead = f.dict.readFlush()
 | |
| 		f.finishBlock()
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	f.copyLen = int(n)
 | |
| 	f.copyData()
 | |
| }
 | |
| 
 | |
| // copyData copies f.copyLen bytes from the underlying reader into f.hist.
 | |
| // It pauses for reads when f.hist is full.
 | |
| func (f *decompressor) copyData() {
 | |
| 	buf := f.dict.writeSlice()
 | |
| 	if len(buf) > f.copyLen {
 | |
| 		buf = buf[:f.copyLen]
 | |
| 	}
 | |
| 
 | |
| 	cnt, err := io.ReadFull(f.r, buf)
 | |
| 	f.roffset += int64(cnt)
 | |
| 	f.copyLen -= cnt
 | |
| 	f.dict.writeMark(cnt)
 | |
| 	if err != nil {
 | |
| 		f.err = noEOF(err)
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	if f.dict.availWrite() == 0 || f.copyLen > 0 {
 | |
| 		f.toRead = f.dict.readFlush()
 | |
| 		f.step = copyData
 | |
| 		return
 | |
| 	}
 | |
| 	f.finishBlock()
 | |
| }
 | |
| 
 | |
| func (f *decompressor) finishBlock() {
 | |
| 	if f.final {
 | |
| 		if f.dict.availRead() > 0 {
 | |
| 			f.toRead = f.dict.readFlush()
 | |
| 		}
 | |
| 		f.err = io.EOF
 | |
| 	}
 | |
| 	f.step = nextBlock
 | |
| }
 | |
| 
 | |
| func (f *decompressor) doStep() {
 | |
| 	switch f.step {
 | |
| 	case copyData:
 | |
| 		f.copyData()
 | |
| 	case nextBlock:
 | |
| 		f.nextBlock()
 | |
| 	case huffmanBytesBuffer:
 | |
| 		f.huffmanBytesBuffer()
 | |
| 	case huffmanBytesReader:
 | |
| 		f.huffmanBytesReader()
 | |
| 	case huffmanBufioReader:
 | |
| 		f.huffmanBufioReader()
 | |
| 	case huffmanStringsReader:
 | |
| 		f.huffmanStringsReader()
 | |
| 	case huffmanGenericReader:
 | |
| 		f.huffmanGenericReader()
 | |
| 	default:
 | |
| 		panic("BUG: unexpected step state")
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // noEOF returns err, unless err == io.EOF, in which case it returns io.ErrUnexpectedEOF.
 | |
| func noEOF(e error) error {
 | |
| 	if e == io.EOF {
 | |
| 		return io.ErrUnexpectedEOF
 | |
| 	}
 | |
| 	return e
 | |
| }
 | |
| 
 | |
| func (f *decompressor) moreBits() error {
 | |
| 	c, err := f.r.ReadByte()
 | |
| 	if err != nil {
 | |
| 		return noEOF(err)
 | |
| 	}
 | |
| 	f.roffset++
 | |
| 	f.b |= uint32(c) << (f.nb & regSizeMaskUint32)
 | |
| 	f.nb += 8
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // Read the next Huffman-encoded symbol from f according to h.
 | |
| func (f *decompressor) huffSym(h *huffmanDecoder) (int, error) {
 | |
| 	// Since a huffmanDecoder can be empty or be composed of a degenerate tree
 | |
| 	// with single element, huffSym must error on these two edge cases. In both
 | |
| 	// cases, the chunks slice will be 0 for the invalid sequence, leading it
 | |
| 	// satisfy the n == 0 check below.
 | |
| 	n := uint(h.maxRead)
 | |
| 	// Optimization. Compiler isn't smart enough to keep f.b,f.nb in registers,
 | |
| 	// but is smart enough to keep local variables in registers, so use nb and b,
 | |
| 	// inline call to moreBits and reassign b,nb back to f on return.
 | |
| 	nb, b := f.nb, f.b
 | |
| 	for {
 | |
| 		for nb < n {
 | |
| 			c, err := f.r.ReadByte()
 | |
| 			if err != nil {
 | |
| 				f.b = b
 | |
| 				f.nb = nb
 | |
| 				return 0, noEOF(err)
 | |
| 			}
 | |
| 			f.roffset++
 | |
| 			b |= uint32(c) << (nb & regSizeMaskUint32)
 | |
| 			nb += 8
 | |
| 		}
 | |
| 		chunk := h.chunks[b&(huffmanNumChunks-1)]
 | |
| 		n = uint(chunk & huffmanCountMask)
 | |
| 		if n > huffmanChunkBits {
 | |
| 			chunk = h.links[chunk>>huffmanValueShift][(b>>huffmanChunkBits)&h.linkMask]
 | |
| 			n = uint(chunk & huffmanCountMask)
 | |
| 		}
 | |
| 		if n <= nb {
 | |
| 			if n == 0 {
 | |
| 				f.b = b
 | |
| 				f.nb = nb
 | |
| 				if debugDecode {
 | |
| 					fmt.Println("huffsym: n==0")
 | |
| 				}
 | |
| 				f.err = CorruptInputError(f.roffset)
 | |
| 				return 0, f.err
 | |
| 			}
 | |
| 			f.b = b >> (n & regSizeMaskUint32)
 | |
| 			f.nb = nb - n
 | |
| 			return int(chunk >> huffmanValueShift), nil
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func makeReader(r io.Reader) Reader {
 | |
| 	if rr, ok := r.(Reader); ok {
 | |
| 		return rr
 | |
| 	}
 | |
| 	return bufio.NewReader(r)
 | |
| }
 | |
| 
 | |
| func fixedHuffmanDecoderInit() {
 | |
| 	fixedOnce.Do(func() {
 | |
| 		// These come from the RFC section 3.2.6.
 | |
| 		var bits [288]int
 | |
| 		for i := 0; i < 144; i++ {
 | |
| 			bits[i] = 8
 | |
| 		}
 | |
| 		for i := 144; i < 256; i++ {
 | |
| 			bits[i] = 9
 | |
| 		}
 | |
| 		for i := 256; i < 280; i++ {
 | |
| 			bits[i] = 7
 | |
| 		}
 | |
| 		for i := 280; i < 288; i++ {
 | |
| 			bits[i] = 8
 | |
| 		}
 | |
| 		fixedHuffmanDecoder.init(bits[:])
 | |
| 	})
 | |
| }
 | |
| 
 | |
| func (f *decompressor) Reset(r io.Reader, dict []byte) error {
 | |
| 	*f = decompressor{
 | |
| 		r:        makeReader(r),
 | |
| 		bits:     f.bits,
 | |
| 		codebits: f.codebits,
 | |
| 		h1:       f.h1,
 | |
| 		h2:       f.h2,
 | |
| 		dict:     f.dict,
 | |
| 		step:     nextBlock,
 | |
| 	}
 | |
| 	f.dict.init(maxMatchOffset, dict)
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // NewReader returns a new ReadCloser that can be used
 | |
| // to read the uncompressed version of r.
 | |
| // If r does not also implement io.ByteReader,
 | |
| // the decompressor may read more data than necessary from r.
 | |
| // It is the caller's responsibility to call Close on the ReadCloser
 | |
| // when finished reading.
 | |
| //
 | |
| // The ReadCloser returned by NewReader also implements Resetter.
 | |
| func NewReader(r io.Reader) io.ReadCloser {
 | |
| 	fixedHuffmanDecoderInit()
 | |
| 
 | |
| 	var f decompressor
 | |
| 	f.r = makeReader(r)
 | |
| 	f.bits = new([maxNumLit + maxNumDist]int)
 | |
| 	f.codebits = new([numCodes]int)
 | |
| 	f.step = nextBlock
 | |
| 	f.dict.init(maxMatchOffset, nil)
 | |
| 	return &f
 | |
| }
 | |
| 
 | |
| // NewReaderDict is like NewReader but initializes the reader
 | |
| // with a preset dictionary. The returned Reader behaves as if
 | |
| // the uncompressed data stream started with the given dictionary,
 | |
| // which has already been read. NewReaderDict is typically used
 | |
| // to read data compressed by NewWriterDict.
 | |
| //
 | |
| // The ReadCloser returned by NewReader also implements Resetter.
 | |
| func NewReaderDict(r io.Reader, dict []byte) io.ReadCloser {
 | |
| 	fixedHuffmanDecoderInit()
 | |
| 
 | |
| 	var f decompressor
 | |
| 	f.r = makeReader(r)
 | |
| 	f.bits = new([maxNumLit + maxNumDist]int)
 | |
| 	f.codebits = new([numCodes]int)
 | |
| 	f.step = nextBlock
 | |
| 	f.dict.init(maxMatchOffset, dict)
 | |
| 	return &f
 | |
| }
 |