mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-11-04 03:52:24 -06:00 
			
		
		
		
	
		
			
				
	
	
		
			515 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			515 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2021 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// Package slices defines various functions useful with slices of any type.
 | 
						|
package slices
 | 
						|
 | 
						|
import (
 | 
						|
	"unsafe"
 | 
						|
 | 
						|
	"golang.org/x/exp/constraints"
 | 
						|
)
 | 
						|
 | 
						|
// Equal reports whether two slices are equal: the same length and all
 | 
						|
// elements equal. If the lengths are different, Equal returns false.
 | 
						|
// Otherwise, the elements are compared in increasing index order, and the
 | 
						|
// comparison stops at the first unequal pair.
 | 
						|
// Floating point NaNs are not considered equal.
 | 
						|
func Equal[S ~[]E, E comparable](s1, s2 S) bool {
 | 
						|
	if len(s1) != len(s2) {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	for i := range s1 {
 | 
						|
		if s1[i] != s2[i] {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
// EqualFunc reports whether two slices are equal using an equality
 | 
						|
// function on each pair of elements. If the lengths are different,
 | 
						|
// EqualFunc returns false. Otherwise, the elements are compared in
 | 
						|
// increasing index order, and the comparison stops at the first index
 | 
						|
// for which eq returns false.
 | 
						|
func EqualFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, eq func(E1, E2) bool) bool {
 | 
						|
	if len(s1) != len(s2) {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	for i, v1 := range s1 {
 | 
						|
		v2 := s2[i]
 | 
						|
		if !eq(v1, v2) {
 | 
						|
			return false
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
// Compare compares the elements of s1 and s2, using [cmp.Compare] on each pair
 | 
						|
// of elements. The elements are compared sequentially, starting at index 0,
 | 
						|
// until one element is not equal to the other.
 | 
						|
// The result of comparing the first non-matching elements is returned.
 | 
						|
// If both slices are equal until one of them ends, the shorter slice is
 | 
						|
// considered less than the longer one.
 | 
						|
// The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
 | 
						|
func Compare[S ~[]E, E constraints.Ordered](s1, s2 S) int {
 | 
						|
	for i, v1 := range s1 {
 | 
						|
		if i >= len(s2) {
 | 
						|
			return +1
 | 
						|
		}
 | 
						|
		v2 := s2[i]
 | 
						|
		if c := cmpCompare(v1, v2); c != 0 {
 | 
						|
			return c
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if len(s1) < len(s2) {
 | 
						|
		return -1
 | 
						|
	}
 | 
						|
	return 0
 | 
						|
}
 | 
						|
 | 
						|
// CompareFunc is like [Compare] but uses a custom comparison function on each
 | 
						|
// pair of elements.
 | 
						|
// The result is the first non-zero result of cmp; if cmp always
 | 
						|
// returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
 | 
						|
// and +1 if len(s1) > len(s2).
 | 
						|
func CompareFunc[S1 ~[]E1, S2 ~[]E2, E1, E2 any](s1 S1, s2 S2, cmp func(E1, E2) int) int {
 | 
						|
	for i, v1 := range s1 {
 | 
						|
		if i >= len(s2) {
 | 
						|
			return +1
 | 
						|
		}
 | 
						|
		v2 := s2[i]
 | 
						|
		if c := cmp(v1, v2); c != 0 {
 | 
						|
			return c
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if len(s1) < len(s2) {
 | 
						|
		return -1
 | 
						|
	}
 | 
						|
	return 0
 | 
						|
}
 | 
						|
 | 
						|
// Index returns the index of the first occurrence of v in s,
 | 
						|
// or -1 if not present.
 | 
						|
func Index[S ~[]E, E comparable](s S, v E) int {
 | 
						|
	for i := range s {
 | 
						|
		if v == s[i] {
 | 
						|
			return i
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return -1
 | 
						|
}
 | 
						|
 | 
						|
// IndexFunc returns the first index i satisfying f(s[i]),
 | 
						|
// or -1 if none do.
 | 
						|
func IndexFunc[S ~[]E, E any](s S, f func(E) bool) int {
 | 
						|
	for i := range s {
 | 
						|
		if f(s[i]) {
 | 
						|
			return i
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return -1
 | 
						|
}
 | 
						|
 | 
						|
// Contains reports whether v is present in s.
 | 
						|
func Contains[S ~[]E, E comparable](s S, v E) bool {
 | 
						|
	return Index(s, v) >= 0
 | 
						|
}
 | 
						|
 | 
						|
// ContainsFunc reports whether at least one
 | 
						|
// element e of s satisfies f(e).
 | 
						|
func ContainsFunc[S ~[]E, E any](s S, f func(E) bool) bool {
 | 
						|
	return IndexFunc(s, f) >= 0
 | 
						|
}
 | 
						|
 | 
						|
// Insert inserts the values v... into s at index i,
 | 
						|
// returning the modified slice.
 | 
						|
// The elements at s[i:] are shifted up to make room.
 | 
						|
// In the returned slice r, r[i] == v[0],
 | 
						|
// and r[i+len(v)] == value originally at r[i].
 | 
						|
// Insert panics if i is out of range.
 | 
						|
// This function is O(len(s) + len(v)).
 | 
						|
func Insert[S ~[]E, E any](s S, i int, v ...E) S {
 | 
						|
	m := len(v)
 | 
						|
	if m == 0 {
 | 
						|
		return s
 | 
						|
	}
 | 
						|
	n := len(s)
 | 
						|
	if i == n {
 | 
						|
		return append(s, v...)
 | 
						|
	}
 | 
						|
	if n+m > cap(s) {
 | 
						|
		// Use append rather than make so that we bump the size of
 | 
						|
		// the slice up to the next storage class.
 | 
						|
		// This is what Grow does but we don't call Grow because
 | 
						|
		// that might copy the values twice.
 | 
						|
		s2 := append(s[:i], make(S, n+m-i)...)
 | 
						|
		copy(s2[i:], v)
 | 
						|
		copy(s2[i+m:], s[i:])
 | 
						|
		return s2
 | 
						|
	}
 | 
						|
	s = s[:n+m]
 | 
						|
 | 
						|
	// before:
 | 
						|
	// s: aaaaaaaabbbbccccccccdddd
 | 
						|
	//            ^   ^       ^   ^
 | 
						|
	//            i  i+m      n  n+m
 | 
						|
	// after:
 | 
						|
	// s: aaaaaaaavvvvbbbbcccccccc
 | 
						|
	//            ^   ^       ^   ^
 | 
						|
	//            i  i+m      n  n+m
 | 
						|
	//
 | 
						|
	// a are the values that don't move in s.
 | 
						|
	// v are the values copied in from v.
 | 
						|
	// b and c are the values from s that are shifted up in index.
 | 
						|
	// d are the values that get overwritten, never to be seen again.
 | 
						|
 | 
						|
	if !overlaps(v, s[i+m:]) {
 | 
						|
		// Easy case - v does not overlap either the c or d regions.
 | 
						|
		// (It might be in some of a or b, or elsewhere entirely.)
 | 
						|
		// The data we copy up doesn't write to v at all, so just do it.
 | 
						|
 | 
						|
		copy(s[i+m:], s[i:])
 | 
						|
 | 
						|
		// Now we have
 | 
						|
		// s: aaaaaaaabbbbbbbbcccccccc
 | 
						|
		//            ^   ^       ^   ^
 | 
						|
		//            i  i+m      n  n+m
 | 
						|
		// Note the b values are duplicated.
 | 
						|
 | 
						|
		copy(s[i:], v)
 | 
						|
 | 
						|
		// Now we have
 | 
						|
		// s: aaaaaaaavvvvbbbbcccccccc
 | 
						|
		//            ^   ^       ^   ^
 | 
						|
		//            i  i+m      n  n+m
 | 
						|
		// That's the result we want.
 | 
						|
		return s
 | 
						|
	}
 | 
						|
 | 
						|
	// The hard case - v overlaps c or d. We can't just shift up
 | 
						|
	// the data because we'd move or clobber the values we're trying
 | 
						|
	// to insert.
 | 
						|
	// So instead, write v on top of d, then rotate.
 | 
						|
	copy(s[n:], v)
 | 
						|
 | 
						|
	// Now we have
 | 
						|
	// s: aaaaaaaabbbbccccccccvvvv
 | 
						|
	//            ^   ^       ^   ^
 | 
						|
	//            i  i+m      n  n+m
 | 
						|
 | 
						|
	rotateRight(s[i:], m)
 | 
						|
 | 
						|
	// Now we have
 | 
						|
	// s: aaaaaaaavvvvbbbbcccccccc
 | 
						|
	//            ^   ^       ^   ^
 | 
						|
	//            i  i+m      n  n+m
 | 
						|
	// That's the result we want.
 | 
						|
	return s
 | 
						|
}
 | 
						|
 | 
						|
// clearSlice sets all elements up to the length of s to the zero value of E.
 | 
						|
// We may use the builtin clear func instead, and remove clearSlice, when upgrading
 | 
						|
// to Go 1.21+.
 | 
						|
func clearSlice[S ~[]E, E any](s S) {
 | 
						|
	var zero E
 | 
						|
	for i := range s {
 | 
						|
		s[i] = zero
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Delete removes the elements s[i:j] from s, returning the modified slice.
 | 
						|
// Delete panics if j > len(s) or s[i:j] is not a valid slice of s.
 | 
						|
// Delete is O(len(s)-i), so if many items must be deleted, it is better to
 | 
						|
// make a single call deleting them all together than to delete one at a time.
 | 
						|
// Delete zeroes the elements s[len(s)-(j-i):len(s)].
 | 
						|
func Delete[S ~[]E, E any](s S, i, j int) S {
 | 
						|
	_ = s[i:j:len(s)] // bounds check
 | 
						|
 | 
						|
	if i == j {
 | 
						|
		return s
 | 
						|
	}
 | 
						|
 | 
						|
	oldlen := len(s)
 | 
						|
	s = append(s[:i], s[j:]...)
 | 
						|
	clearSlice(s[len(s):oldlen]) // zero/nil out the obsolete elements, for GC
 | 
						|
	return s
 | 
						|
}
 | 
						|
 | 
						|
// DeleteFunc removes any elements from s for which del returns true,
 | 
						|
// returning the modified slice.
 | 
						|
// DeleteFunc zeroes the elements between the new length and the original length.
 | 
						|
func DeleteFunc[S ~[]E, E any](s S, del func(E) bool) S {
 | 
						|
	i := IndexFunc(s, del)
 | 
						|
	if i == -1 {
 | 
						|
		return s
 | 
						|
	}
 | 
						|
	// Don't start copying elements until we find one to delete.
 | 
						|
	for j := i + 1; j < len(s); j++ {
 | 
						|
		if v := s[j]; !del(v) {
 | 
						|
			s[i] = v
 | 
						|
			i++
 | 
						|
		}
 | 
						|
	}
 | 
						|
	clearSlice(s[i:]) // zero/nil out the obsolete elements, for GC
 | 
						|
	return s[:i]
 | 
						|
}
 | 
						|
 | 
						|
// Replace replaces the elements s[i:j] by the given v, and returns the
 | 
						|
// modified slice. Replace panics if s[i:j] is not a valid slice of s.
 | 
						|
// When len(v) < (j-i), Replace zeroes the elements between the new length and the original length.
 | 
						|
func Replace[S ~[]E, E any](s S, i, j int, v ...E) S {
 | 
						|
	_ = s[i:j] // verify that i:j is a valid subslice
 | 
						|
 | 
						|
	if i == j {
 | 
						|
		return Insert(s, i, v...)
 | 
						|
	}
 | 
						|
	if j == len(s) {
 | 
						|
		return append(s[:i], v...)
 | 
						|
	}
 | 
						|
 | 
						|
	tot := len(s[:i]) + len(v) + len(s[j:])
 | 
						|
	if tot > cap(s) {
 | 
						|
		// Too big to fit, allocate and copy over.
 | 
						|
		s2 := append(s[:i], make(S, tot-i)...) // See Insert
 | 
						|
		copy(s2[i:], v)
 | 
						|
		copy(s2[i+len(v):], s[j:])
 | 
						|
		return s2
 | 
						|
	}
 | 
						|
 | 
						|
	r := s[:tot]
 | 
						|
 | 
						|
	if i+len(v) <= j {
 | 
						|
		// Easy, as v fits in the deleted portion.
 | 
						|
		copy(r[i:], v)
 | 
						|
		if i+len(v) != j {
 | 
						|
			copy(r[i+len(v):], s[j:])
 | 
						|
		}
 | 
						|
		clearSlice(s[tot:]) // zero/nil out the obsolete elements, for GC
 | 
						|
		return r
 | 
						|
	}
 | 
						|
 | 
						|
	// We are expanding (v is bigger than j-i).
 | 
						|
	// The situation is something like this:
 | 
						|
	// (example has i=4,j=8,len(s)=16,len(v)=6)
 | 
						|
	// s: aaaaxxxxbbbbbbbbyy
 | 
						|
	//        ^   ^       ^ ^
 | 
						|
	//        i   j  len(s) tot
 | 
						|
	// a: prefix of s
 | 
						|
	// x: deleted range
 | 
						|
	// b: more of s
 | 
						|
	// y: area to expand into
 | 
						|
 | 
						|
	if !overlaps(r[i+len(v):], v) {
 | 
						|
		// Easy, as v is not clobbered by the first copy.
 | 
						|
		copy(r[i+len(v):], s[j:])
 | 
						|
		copy(r[i:], v)
 | 
						|
		return r
 | 
						|
	}
 | 
						|
 | 
						|
	// This is a situation where we don't have a single place to which
 | 
						|
	// we can copy v. Parts of it need to go to two different places.
 | 
						|
	// We want to copy the prefix of v into y and the suffix into x, then
 | 
						|
	// rotate |y| spots to the right.
 | 
						|
	//
 | 
						|
	//        v[2:]      v[:2]
 | 
						|
	//         |           |
 | 
						|
	// s: aaaavvvvbbbbbbbbvv
 | 
						|
	//        ^   ^       ^ ^
 | 
						|
	//        i   j  len(s) tot
 | 
						|
	//
 | 
						|
	// If either of those two destinations don't alias v, then we're good.
 | 
						|
	y := len(v) - (j - i) // length of y portion
 | 
						|
 | 
						|
	if !overlaps(r[i:j], v) {
 | 
						|
		copy(r[i:j], v[y:])
 | 
						|
		copy(r[len(s):], v[:y])
 | 
						|
		rotateRight(r[i:], y)
 | 
						|
		return r
 | 
						|
	}
 | 
						|
	if !overlaps(r[len(s):], v) {
 | 
						|
		copy(r[len(s):], v[:y])
 | 
						|
		copy(r[i:j], v[y:])
 | 
						|
		rotateRight(r[i:], y)
 | 
						|
		return r
 | 
						|
	}
 | 
						|
 | 
						|
	// Now we know that v overlaps both x and y.
 | 
						|
	// That means that the entirety of b is *inside* v.
 | 
						|
	// So we don't need to preserve b at all; instead we
 | 
						|
	// can copy v first, then copy the b part of v out of
 | 
						|
	// v to the right destination.
 | 
						|
	k := startIdx(v, s[j:])
 | 
						|
	copy(r[i:], v)
 | 
						|
	copy(r[i+len(v):], r[i+k:])
 | 
						|
	return r
 | 
						|
}
 | 
						|
 | 
						|
// Clone returns a copy of the slice.
 | 
						|
// The elements are copied using assignment, so this is a shallow clone.
 | 
						|
func Clone[S ~[]E, E any](s S) S {
 | 
						|
	// Preserve nil in case it matters.
 | 
						|
	if s == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return append(S([]E{}), s...)
 | 
						|
}
 | 
						|
 | 
						|
// Compact replaces consecutive runs of equal elements with a single copy.
 | 
						|
// This is like the uniq command found on Unix.
 | 
						|
// Compact modifies the contents of the slice s and returns the modified slice,
 | 
						|
// which may have a smaller length.
 | 
						|
// Compact zeroes the elements between the new length and the original length.
 | 
						|
func Compact[S ~[]E, E comparable](s S) S {
 | 
						|
	if len(s) < 2 {
 | 
						|
		return s
 | 
						|
	}
 | 
						|
	i := 1
 | 
						|
	for k := 1; k < len(s); k++ {
 | 
						|
		if s[k] != s[k-1] {
 | 
						|
			if i != k {
 | 
						|
				s[i] = s[k]
 | 
						|
			}
 | 
						|
			i++
 | 
						|
		}
 | 
						|
	}
 | 
						|
	clearSlice(s[i:]) // zero/nil out the obsolete elements, for GC
 | 
						|
	return s[:i]
 | 
						|
}
 | 
						|
 | 
						|
// CompactFunc is like [Compact] but uses an equality function to compare elements.
 | 
						|
// For runs of elements that compare equal, CompactFunc keeps the first one.
 | 
						|
// CompactFunc zeroes the elements between the new length and the original length.
 | 
						|
func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
 | 
						|
	if len(s) < 2 {
 | 
						|
		return s
 | 
						|
	}
 | 
						|
	i := 1
 | 
						|
	for k := 1; k < len(s); k++ {
 | 
						|
		if !eq(s[k], s[k-1]) {
 | 
						|
			if i != k {
 | 
						|
				s[i] = s[k]
 | 
						|
			}
 | 
						|
			i++
 | 
						|
		}
 | 
						|
	}
 | 
						|
	clearSlice(s[i:]) // zero/nil out the obsolete elements, for GC
 | 
						|
	return s[:i]
 | 
						|
}
 | 
						|
 | 
						|
// Grow increases the slice's capacity, if necessary, to guarantee space for
 | 
						|
// another n elements. After Grow(n), at least n elements can be appended
 | 
						|
// to the slice without another allocation. If n is negative or too large to
 | 
						|
// allocate the memory, Grow panics.
 | 
						|
func Grow[S ~[]E, E any](s S, n int) S {
 | 
						|
	if n < 0 {
 | 
						|
		panic("cannot be negative")
 | 
						|
	}
 | 
						|
	if n -= cap(s) - len(s); n > 0 {
 | 
						|
		// TODO(https://go.dev/issue/53888): Make using []E instead of S
 | 
						|
		// to workaround a compiler bug where the runtime.growslice optimization
 | 
						|
		// does not take effect. Revert when the compiler is fixed.
 | 
						|
		s = append([]E(s)[:cap(s)], make([]E, n)...)[:len(s)]
 | 
						|
	}
 | 
						|
	return s
 | 
						|
}
 | 
						|
 | 
						|
// Clip removes unused capacity from the slice, returning s[:len(s):len(s)].
 | 
						|
func Clip[S ~[]E, E any](s S) S {
 | 
						|
	return s[:len(s):len(s)]
 | 
						|
}
 | 
						|
 | 
						|
// Rotation algorithm explanation:
 | 
						|
//
 | 
						|
// rotate left by 2
 | 
						|
// start with
 | 
						|
//   0123456789
 | 
						|
// split up like this
 | 
						|
//   01 234567 89
 | 
						|
// swap first 2 and last 2
 | 
						|
//   89 234567 01
 | 
						|
// join first parts
 | 
						|
//   89234567 01
 | 
						|
// recursively rotate first left part by 2
 | 
						|
//   23456789 01
 | 
						|
// join at the end
 | 
						|
//   2345678901
 | 
						|
//
 | 
						|
// rotate left by 8
 | 
						|
// start with
 | 
						|
//   0123456789
 | 
						|
// split up like this
 | 
						|
//   01 234567 89
 | 
						|
// swap first 2 and last 2
 | 
						|
//   89 234567 01
 | 
						|
// join last parts
 | 
						|
//   89 23456701
 | 
						|
// recursively rotate second part left by 6
 | 
						|
//   89 01234567
 | 
						|
// join at the end
 | 
						|
//   8901234567
 | 
						|
 | 
						|
// TODO: There are other rotate algorithms.
 | 
						|
// This algorithm has the desirable property that it moves each element exactly twice.
 | 
						|
// The triple-reverse algorithm is simpler and more cache friendly, but takes more writes.
 | 
						|
// The follow-cycles algorithm can be 1-write but it is not very cache friendly.
 | 
						|
 | 
						|
// rotateLeft rotates b left by n spaces.
 | 
						|
// s_final[i] = s_orig[i+r], wrapping around.
 | 
						|
func rotateLeft[E any](s []E, r int) {
 | 
						|
	for r != 0 && r != len(s) {
 | 
						|
		if r*2 <= len(s) {
 | 
						|
			swap(s[:r], s[len(s)-r:])
 | 
						|
			s = s[:len(s)-r]
 | 
						|
		} else {
 | 
						|
			swap(s[:len(s)-r], s[r:])
 | 
						|
			s, r = s[len(s)-r:], r*2-len(s)
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
func rotateRight[E any](s []E, r int) {
 | 
						|
	rotateLeft(s, len(s)-r)
 | 
						|
}
 | 
						|
 | 
						|
// swap swaps the contents of x and y. x and y must be equal length and disjoint.
 | 
						|
func swap[E any](x, y []E) {
 | 
						|
	for i := 0; i < len(x); i++ {
 | 
						|
		x[i], y[i] = y[i], x[i]
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// overlaps reports whether the memory ranges a[0:len(a)] and b[0:len(b)] overlap.
 | 
						|
func overlaps[E any](a, b []E) bool {
 | 
						|
	if len(a) == 0 || len(b) == 0 {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	elemSize := unsafe.Sizeof(a[0])
 | 
						|
	if elemSize == 0 {
 | 
						|
		return false
 | 
						|
	}
 | 
						|
	// TODO: use a runtime/unsafe facility once one becomes available. See issue 12445.
 | 
						|
	// Also see crypto/internal/alias/alias.go:AnyOverlap
 | 
						|
	return uintptr(unsafe.Pointer(&a[0])) <= uintptr(unsafe.Pointer(&b[len(b)-1]))+(elemSize-1) &&
 | 
						|
		uintptr(unsafe.Pointer(&b[0])) <= uintptr(unsafe.Pointer(&a[len(a)-1]))+(elemSize-1)
 | 
						|
}
 | 
						|
 | 
						|
// startIdx returns the index in haystack where the needle starts.
 | 
						|
// prerequisite: the needle must be aliased entirely inside the haystack.
 | 
						|
func startIdx[E any](haystack, needle []E) int {
 | 
						|
	p := &needle[0]
 | 
						|
	for i := range haystack {
 | 
						|
		if p == &haystack[i] {
 | 
						|
			return i
 | 
						|
		}
 | 
						|
	}
 | 
						|
	// TODO: what if the overlap is by a non-integral number of Es?
 | 
						|
	panic("needle not found")
 | 
						|
}
 | 
						|
 | 
						|
// Reverse reverses the elements of the slice in place.
 | 
						|
func Reverse[S ~[]E, E any](s S) {
 | 
						|
	for i, j := 0, len(s)-1; i < j; i, j = i+1, j-1 {
 | 
						|
		s[i], s[j] = s[j], s[i]
 | 
						|
	}
 | 
						|
}
 |