mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-11-03 22:32:25 -06:00 
			
		
		
		
	* Add SQLite support, fix un-thread-safe DB caches, small performance fixes Signed-off-by: kim (grufwub) <grufwub@gmail.com> * add SQLite licenses to README Signed-off-by: kim (grufwub) <grufwub@gmail.com> * appease the linter, and fix my dumbass-ery Signed-off-by: kim (grufwub) <grufwub@gmail.com> * make requested changes Signed-off-by: kim (grufwub) <grufwub@gmail.com> * add back comment Signed-off-by: kim (grufwub) <grufwub@gmail.com>
		
			
				
	
	
		
			80 lines
		
	
	
	
		
			1.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			80 lines
		
	
	
	
		
			1.8 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright (c) 2016 The mathutil Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
package mathutil // import "modernc.org/mathutil"
 | 
						|
 | 
						|
import (
 | 
						|
	"math/big"
 | 
						|
)
 | 
						|
 | 
						|
type float struct {
 | 
						|
	n           *big.Int
 | 
						|
	fracBits    int
 | 
						|
	maxFracBits int
 | 
						|
}
 | 
						|
 | 
						|
func newFloat(n *big.Int, fracBits, maxFracBits int) float {
 | 
						|
	f := float{n: n, fracBits: fracBits, maxFracBits: maxFracBits}
 | 
						|
	f.normalize()
 | 
						|
	return f
 | 
						|
}
 | 
						|
 | 
						|
func (f *float) normalize() {
 | 
						|
	n := f.n.BitLen()
 | 
						|
	if n == 0 {
 | 
						|
		return
 | 
						|
	}
 | 
						|
 | 
						|
	if n := f.fracBits - f.maxFracBits; n > 0 {
 | 
						|
		bit := f.n.Bit(n - 1)
 | 
						|
		f.n.Rsh(f.n, uint(n))
 | 
						|
		if bit != 0 {
 | 
						|
			f.n.Add(f.n, _1)
 | 
						|
		}
 | 
						|
		f.fracBits -= n
 | 
						|
	}
 | 
						|
 | 
						|
	var i int
 | 
						|
	for ; f.fracBits > 0 && i <= f.fracBits && f.n.Bit(i) == 0; i++ {
 | 
						|
		f.fracBits--
 | 
						|
	}
 | 
						|
 | 
						|
	if i != 0 {
 | 
						|
		f.n.Rsh(f.n, uint(i))
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
func (f *float) eq1() bool { return f.fracBits == 0 && f.n.BitLen() == 1 }
 | 
						|
func (f *float) ge2() bool { return f.n.BitLen() > f.fracBits+1 }
 | 
						|
 | 
						|
func (f *float) div2() {
 | 
						|
	f.fracBits++
 | 
						|
	f.normalize()
 | 
						|
}
 | 
						|
 | 
						|
// BinaryLog computes the binary logarithm of n. The result consists of a
 | 
						|
// characteristic and a mantissa having precision mantissaBits. The value of
 | 
						|
// the binary logarithm is
 | 
						|
//
 | 
						|
//	characteristic + mantissa*(2^-mantissaBits)
 | 
						|
//
 | 
						|
// BinaryLog panics for n <= 0 or mantissaBits < 0.
 | 
						|
func BinaryLog(n *big.Int, mantissaBits int) (characteristic int, mantissa *big.Int) {
 | 
						|
	if n.Sign() <= 0 || mantissaBits < 0 {
 | 
						|
		panic("invalid argument of BinaryLog")
 | 
						|
	}
 | 
						|
 | 
						|
	characteristic = n.BitLen() - 1
 | 
						|
	mantissa = big.NewInt(0)
 | 
						|
	x := newFloat(n, characteristic, mantissaBits)
 | 
						|
	for ; mantissaBits != 0 && !x.eq1(); mantissaBits-- {
 | 
						|
		x.sqr()
 | 
						|
		mantissa.Lsh(mantissa, 1)
 | 
						|
		if x.ge2() {
 | 
						|
			mantissa.SetBit(mantissa, 0, 1)
 | 
						|
			x.div2()
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return characteristic, mantissa
 | 
						|
}
 |