mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-11-02 16:52:25 -06:00 
			
		
		
		
	* add back exif-terminator and use only for jpeg,png,webp * fix arguments passed to terminateExif() * pull in latest exif-terminator * fix test * update processed img --------- Co-authored-by: tobi <tobi.smethurst@protonmail.com>
		
			
				
	
	
		
			120 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			120 lines
		
	
	
	
		
			3.6 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2014 Google Inc. All rights reserved.
 | 
						|
//
 | 
						|
// Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
// you may not use this file except in compliance with the License.
 | 
						|
// You may obtain a copy of the License at
 | 
						|
//
 | 
						|
//     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
//
 | 
						|
// Unless required by applicable law or agreed to in writing, software
 | 
						|
// distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
// See the License for the specific language governing permissions and
 | 
						|
// limitations under the License.
 | 
						|
 | 
						|
package s1
 | 
						|
 | 
						|
import (
 | 
						|
	"math"
 | 
						|
	"strconv"
 | 
						|
)
 | 
						|
 | 
						|
// Angle represents a 1D angle. The internal representation is a double precision
 | 
						|
// value in radians, so conversion to and from radians is exact.
 | 
						|
// Conversions between E5, E6, E7, and Degrees are not always
 | 
						|
// exact. For example, Degrees(3.1) is different from E6(3100000) or E7(31000000).
 | 
						|
//
 | 
						|
// The following conversions between degrees and radians are exact:
 | 
						|
//
 | 
						|
//       Degree*180 == Radian*math.Pi
 | 
						|
//   Degree*(180/n) == Radian*(math.Pi/n)     for n == 0..8
 | 
						|
//
 | 
						|
// These identities hold when the arguments are scaled up or down by any power
 | 
						|
// of 2. Some similar identities are also true, for example,
 | 
						|
//
 | 
						|
//   Degree*60 == Radian*(math.Pi/3)
 | 
						|
//
 | 
						|
// But be aware that this type of identity does not hold in general. For example,
 | 
						|
//
 | 
						|
//   Degree*3 != Radian*(math.Pi/60)
 | 
						|
//
 | 
						|
// Similarly, the conversion to radians means that (Angle(x)*Degree).Degrees()
 | 
						|
// does not always equal x. For example,
 | 
						|
//
 | 
						|
//   (Angle(45*n)*Degree).Degrees() == 45*n     for n == 0..8
 | 
						|
//
 | 
						|
// but
 | 
						|
//
 | 
						|
//   (60*Degree).Degrees() != 60
 | 
						|
//
 | 
						|
// When testing for equality, you should allow for numerical errors (ApproxEqual)
 | 
						|
// or convert to discrete E5/E6/E7 values first.
 | 
						|
type Angle float64
 | 
						|
 | 
						|
// Angle units.
 | 
						|
const (
 | 
						|
	Radian Angle = 1
 | 
						|
	Degree       = (math.Pi / 180) * Radian
 | 
						|
 | 
						|
	E5 = 1e-5 * Degree
 | 
						|
	E6 = 1e-6 * Degree
 | 
						|
	E7 = 1e-7 * Degree
 | 
						|
)
 | 
						|
 | 
						|
// Radians returns the angle in radians.
 | 
						|
func (a Angle) Radians() float64 { return float64(a) }
 | 
						|
 | 
						|
// Degrees returns the angle in degrees.
 | 
						|
func (a Angle) Degrees() float64 { return float64(a / Degree) }
 | 
						|
 | 
						|
// round returns the value rounded to nearest as an int32.
 | 
						|
// This does not match C++ exactly for the case of x.5.
 | 
						|
func round(val float64) int32 {
 | 
						|
	if val < 0 {
 | 
						|
		return int32(val - 0.5)
 | 
						|
	}
 | 
						|
	return int32(val + 0.5)
 | 
						|
}
 | 
						|
 | 
						|
// InfAngle returns an angle larger than any finite angle.
 | 
						|
func InfAngle() Angle {
 | 
						|
	return Angle(math.Inf(1))
 | 
						|
}
 | 
						|
 | 
						|
// isInf reports whether this Angle is infinite.
 | 
						|
func (a Angle) isInf() bool {
 | 
						|
	return math.IsInf(float64(a), 0)
 | 
						|
}
 | 
						|
 | 
						|
// E5 returns the angle in hundred thousandths of degrees.
 | 
						|
func (a Angle) E5() int32 { return round(a.Degrees() * 1e5) }
 | 
						|
 | 
						|
// E6 returns the angle in millionths of degrees.
 | 
						|
func (a Angle) E6() int32 { return round(a.Degrees() * 1e6) }
 | 
						|
 | 
						|
// E7 returns the angle in ten millionths of degrees.
 | 
						|
func (a Angle) E7() int32 { return round(a.Degrees() * 1e7) }
 | 
						|
 | 
						|
// Abs returns the absolute value of the angle.
 | 
						|
func (a Angle) Abs() Angle { return Angle(math.Abs(float64(a))) }
 | 
						|
 | 
						|
// Normalized returns an equivalent angle in (-π, π].
 | 
						|
func (a Angle) Normalized() Angle {
 | 
						|
	rad := math.Remainder(float64(a), 2*math.Pi)
 | 
						|
	if rad <= -math.Pi {
 | 
						|
		rad = math.Pi
 | 
						|
	}
 | 
						|
	return Angle(rad)
 | 
						|
}
 | 
						|
 | 
						|
func (a Angle) String() string {
 | 
						|
	return strconv.FormatFloat(a.Degrees(), 'f', 7, 64) // like "%.7f"
 | 
						|
}
 | 
						|
 | 
						|
// ApproxEqual reports whether the two angles are the same up to a small tolerance.
 | 
						|
func (a Angle) ApproxEqual(other Angle) bool {
 | 
						|
	return math.Abs(float64(a)-float64(other)) <= epsilon
 | 
						|
}
 | 
						|
 | 
						|
// BUG(dsymonds): The major differences from the C++ version are:
 | 
						|
//   - no unsigned E5/E6/E7 methods
 |