gotosocial/internal/cache/wrappers.go

410 lines
12 KiB
Go

// GoToSocial
// Copyright (C) GoToSocial Authors admin@gotosocial.org
// SPDX-License-Identifier: AGPL-3.0-or-later
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
package cache
import (
"maps"
"slices"
"sync/atomic"
"codeberg.org/gruf/go-cache/v3/simple"
"codeberg.org/gruf/go-structr"
"github.com/superseriousbusiness/gotosocial/internal/paging"
)
// SliceCache wraps a simple.Cache to provide simple loader-callback
// functions for fetching + caching slices of objects (e.g. IDs).
type SliceCache[T any] struct {
simple.Cache[string, []T]
}
// Init initializes the cache with given length + capacity.
func (c *SliceCache[T]) Init(len, cap int) {
c.Cache = simple.Cache[string, []T]{}
c.Cache.Init(len, cap)
}
// Load will attempt to load an existing slice from cache for key, else calling load function and caching the result.
func (c *SliceCache[T]) Load(key string, load func() ([]T, error)) ([]T, error) {
// Look for cached values.
data, ok := c.Cache.Get(key)
if !ok {
var err error
// Not cached, load!
data, err = load()
if err != nil {
return nil, err
}
// Store the data.
c.Cache.Set(key, data)
}
// Return data clone for safety.
return slices.Clone(data), nil
}
// Invalidate: see simple.Cache{}.InvalidateAll().
func (c *SliceCache[T]) Invalidate(keys ...string) {
_ = c.Cache.InvalidateAll(keys...)
}
// StructCache wraps a structr.Cache{} to simple index caching
// by name (also to ease update to library version that introduced
// this). (in the future it may be worth embedding these indexes by
// name under the main database caches struct which would reduce
// time required to access cached values).
type StructCache[StructType any] struct {
structr.Cache[StructType]
index map[string]*structr.Index
}
// Init initializes the cache with given structr.CacheConfig{}.
func (c *StructCache[T]) Init(config structr.CacheConfig[T]) {
c.index = make(map[string]*structr.Index, len(config.Indices))
c.Cache = structr.Cache[T]{}
c.Cache.Init(config)
for _, cfg := range config.Indices {
c.index[cfg.Fields] = c.Cache.Index(cfg.Fields)
}
}
// GetOne calls structr.Cache{}.GetOne(), using a cached structr.Index{} by 'index' name.
// Note: this also handles conversion of the untyped (any) keys to structr.Key{} via structr.Index{}.
func (c *StructCache[T]) GetOne(index string, key ...any) (T, bool) {
i := c.index[index]
return c.Cache.GetOne(i, i.Key(key...))
}
// Get calls structr.Cache{}.Get(), using a cached structr.Index{} by 'index' name.
// Note: this also handles conversion of the untyped (any) keys to structr.Key{} via structr.Index{}.
func (c *StructCache[T]) Get(index string, keys ...[]any) []T {
i := c.index[index]
return c.Cache.Get(i, i.Keys(keys...)...)
}
// LoadOne calls structr.Cache{}.LoadOne(), using a cached structr.Index{} by 'index' name.
// Note: this also handles conversion of the untyped (any) keys to structr.Key{} via structr.Index{}.
func (c *StructCache[T]) LoadOne(index string, load func() (T, error), key ...any) (T, error) {
i := c.index[index]
return c.Cache.LoadOne(i, i.Key(key...), load)
}
// LoadIDs calls structr.Cache{}.Load(), using a cached structr.Index{} by 'index' name. Note: this also handles
// conversion of the ID strings to structr.Key{} via structr.Index{}. Strong typing is used for caller convenience.
//
// If you need to load multiple cache keys other than by ID strings, please create another convenience wrapper.
func (c *StructCache[T]) LoadIDs(index string, ids []string, load func([]string) ([]T, error)) ([]T, error) {
i := c.index[index]
if i == nil {
// we only perform this check here as
// we're going to use the index before
// passing it to cache in main .Load().
panic("missing index for cache type")
}
// Generate cache keys for ID types.
keys := make([]structr.Key, len(ids))
for x, id := range ids {
keys[x] = i.Key(id)
}
// Pass loader callback with wrapper onto main cache load function.
return c.Cache.Load(i, keys, func(uncached []structr.Key) ([]T, error) {
uncachedIDs := make([]string, len(uncached))
for i := range uncached {
uncachedIDs[i] = uncached[i].Values()[0].(string)
}
return load(uncachedIDs)
})
}
// LoadIDs2Part works as LoadIDs, except using a two-part key,
// where the first part is an ID shared by all the objects,
// and the second part is a list of per-object IDs.
func (c *StructCache[T]) LoadIDs2Part(index string, id1 string, id2s []string, load func(string, []string) ([]T, error)) ([]T, error) {
i := c.index[index]
if i == nil {
// we only perform this check here as
// we're going to use the index before
// passing it to cache in main .Load().
panic("missing index for cache type")
}
// Generate cache keys for two-part IDs.
keys := make([]structr.Key, len(id2s))
for x, id2 := range id2s {
keys[x] = i.Key(id1, id2)
}
// Pass loader callback with wrapper onto main cache load function.
return c.Cache.Load(i, keys, func(uncached []structr.Key) ([]T, error) {
uncachedIDs := make([]string, len(uncached))
for i := range uncached {
uncachedIDs[i] = uncached[i].Values()[1].(string)
}
return load(id1, uncachedIDs)
})
}
// Invalidate calls structr.Cache{}.Invalidate(), using a cached structr.Index{} by 'index' name.
// Note: this also handles conversion of the untyped (any) keys to structr.Key{} via structr.Index{}.
func (c *StructCache[T]) Invalidate(index string, key ...any) {
i := c.index[index]
c.Cache.Invalidate(i, i.Key(key...))
}
// InvalidateIDs calls structr.Cache{}.Invalidate(), using a cached structr.Index{} by 'index' name. Note: this also
// handles conversion of the ID strings to structr.Key{} via structr.Index{}. Strong typing is used for caller convenience.
//
// If you need to invalidate multiple cache keys other than by ID strings, please create another convenience wrapper.
func (c *StructCache[T]) InvalidateIDs(index string, ids []string) {
i := c.index[index]
if i == nil {
// we only perform this check here as
// we're going to use the index before
// passing it to cache in main .Load().
panic("missing index for cache type")
}
// Generate cache keys for ID types.
keys := make([]structr.Key, len(ids))
for x, id := range ids {
keys[x] = i.Key(id)
}
// Pass to main invalidate func.
c.Cache.Invalidate(i, keys...)
}
type TimelineCache[T any] struct {
structr.Timeline[T, string]
index map[string]*structr.Index
maxSz int
}
func (t *TimelineCache[T]) Init(config structr.TimelineConfig[T, string], maxSz int) {
t.index = make(map[string]*structr.Index, len(config.Indices))
t.Timeline = structr.Timeline[T, string]{}
t.Timeline.Init(config)
for _, cfg := range config.Indices {
t.index[cfg.Fields] = t.Timeline.Index(cfg.Fields)
}
t.maxSz = maxSz
}
func toDirection(order paging.Order) structr.Direction {
switch order {
case paging.OrderAscending:
return structr.Asc
case paging.OrderDescending:
return structr.Desc
default:
panic("invalid order")
}
}
func (t *TimelineCache[T]) Select(page *paging.Page) []T {
min, max := page.Min.Value, page.Max.Value
lim, dir := page.Limit, toDirection(page.Order())
return t.Timeline.Select(min, max, lim, dir)
}
func (t *TimelineCache[T]) Invalidate(index string, keyParts ...any) {
i := t.index[index]
t.Timeline.Invalidate(i, i.Key(keyParts...))
}
func (t *TimelineCache[T]) Trim(perc float64) {
t.Timeline.Trim(perc, t.maxSz, structr.Asc)
}
func (t *TimelineCache[T]) InvalidateIDs(index string, ids []string) {
i := t.index[index]
if i == nil {
// we only perform this check here as
// we're going to use the index before
// passing it to cache in main .Load().
panic("missing index for cache type")
}
// Generate cache keys for ID types.
keys := make([]structr.Key, len(ids))
for x, id := range ids {
keys[x] = i.Key(id)
}
// Pass to main invalidate func.
t.Timeline.Invalidate(i, keys...)
}
// TimelinesCache provides a cache of TimelineCache{}
// objects, keyed by string and concurrency safe, optimized
// almost entirely for reads. On each creation of a new key
// in the cache, the entire internal map will be cloned, BUT
// all reads are only a single atomic operation, no mutex locks!
type TimelinesCache[T any] struct {
cfg structr.TimelineConfig[T, string]
ptr atomic.Pointer[map[string]*TimelineCache[T]] // ronly except by CAS
max int
}
// Init ...
func (t *TimelinesCache[T]) Init(config structr.TimelineConfig[T, string], max int) {
// Create new test timeline to validate.
(&TimelineCache[T]{}).Init(config, max)
// Invalidate
// timeline maps.
t.ptr.Store(nil)
// Set config.
t.cfg = config
t.max = max
}
// Get fetches a timeline with given ID from cache, creating it if required.
func (t *TimelinesCache[T]) Get(id string) *TimelineCache[T] {
var tt *TimelineCache[T]
for {
// Load current ptr.
cur := t.ptr.Load()
// Get timeline map to work on.
var m map[string]*TimelineCache[T]
if cur != nil {
// Look for existing
// timeline in cache.
tt = (*cur)[id]
if tt != nil {
return tt
}
// Get clone of current
// before modifications.
m = maps.Clone(*cur)
} else {
// Allocate new timeline map for below.
m = make(map[string]*TimelineCache[T])
}
if tt == nil {
// Allocate new timeline.
tt = new(TimelineCache[T])
tt.Init(t.cfg, t.max)
}
// Store timeline
// in new map.
m[id] = tt
// Attempt to update the map ptr.
if !t.ptr.CompareAndSwap(cur, &m) {
// We failed the
// CAS, reloop.
continue
}
// Successfully inserted
// new timeline model.
return tt
}
}
// Delete removes timeline with ID from cache.
func (t *TimelinesCache[T]) Delete(id string) {
for {
// Load current ptr.
cur := t.ptr.Load()
// Check for empty map / not in map.
if cur == nil || (*cur)[id] == nil {
return
}
// Get clone of current
// before modifications.
m := maps.Clone(*cur)
// Delete ID.
delete(m, id)
// Attempt to update the map ptr.
if !t.ptr.CompareAndSwap(cur, &m) {
// We failed the
// CAS, reloop.
continue
}
// Successfully
// deleted ID.
return
}
}
func (t *TimelinesCache[T]) Insert(values ...T) {
if p := t.ptr.Load(); p != nil {
for _, timeline := range *p {
timeline.Insert(values...)
}
}
}
func (t *TimelinesCache[T]) InsertInto(id string, values ...T) {
t.Get(id).Insert(values...)
}
func (t *TimelinesCache[T]) Invalidate(index string, keyParts ...any) {
if p := t.ptr.Load(); p != nil {
for _, timeline := range *p {
timeline.Invalidate(index, keyParts...)
}
}
}
func (t *TimelinesCache[T]) InvalidateFrom(id string, index string, keyParts ...any) {
t.Get(id).Invalidate(index, keyParts...)
}
func (t *TimelinesCache[T]) InvalidateIDs(index string, ids []string) {
if p := t.ptr.Load(); p != nil {
for _, timeline := range *p {
timeline.InvalidateIDs(index, ids)
}
}
}
func (t *TimelinesCache[T]) InvalidateIDsFrom(id string, index string, ids []string) {
t.Get(id).InvalidateIDs(index, ids)
}
func (t *TimelinesCache[T]) Trim(perc float64) {
if p := t.ptr.Load(); p != nil {
for _, timeline := range *p {
timeline.Trim(perc)
}
}
}
func (t *TimelinesCache[T]) Clear(id string) { t.Get(id).Clear() }