mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-31 01:42:25 -05:00 
			
		
		
		
	* add back exif-terminator and use only for jpeg,png,webp * fix arguments passed to terminateExif() * pull in latest exif-terminator * fix test * update processed img --------- Co-authored-by: tobi <tobi.smethurst@protonmail.com>
		
			
				
	
	
		
			88 lines
		
	
	
	
		
			3.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			88 lines
		
	
	
	
		
			3.4 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2017 Google Inc. All rights reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| package s2
 | |
| 
 | |
| // nthDerivativeCoder provides Nth Derivative Coding.
 | |
| //   (In signal processing disciplines, this is known as N-th Delta Coding.)
 | |
| //
 | |
| // Good for varint coding integer sequences with polynomial trends.
 | |
| //
 | |
| // Instead of coding a sequence of values directly, code its nth-order discrete
 | |
| // derivative.  Overflow in integer addition and subtraction makes this a
 | |
| // lossless transform.
 | |
| //
 | |
| //                                       constant     linear      quadratic
 | |
| //                                        trend       trend         trend
 | |
| //                                      /        \  /        \  /           \_
 | |
| // input                               |0  0  0  0  1  2  3  4  9  16  25  36
 | |
| // 0th derivative(identity)            |0  0  0  0  1  2  3  4  9  16  25  36
 | |
| // 1st derivative(delta coding)        |   0  0  0  1  1  1  1  5   7   9  11
 | |
| // 2nd derivative(linear prediction)   |      0  0  1  0  0  0  4   2   2   2
 | |
| //                                      -------------------------------------
 | |
| //                                      0  1  2  3  4  5  6  7  8   9  10  11
 | |
| //                                                  n in sequence
 | |
| //
 | |
| // Higher-order codings can break even or be detrimental on other sequences.
 | |
| //
 | |
| //                                           random            oscillating
 | |
| //                                      /               \  /                  \_
 | |
| // input                               |5  9  6  1   8  8  2 -2   4  -4   6  -6
 | |
| // 0th derivative(identity)            |5  9  6  1   8  8  2 -2   4  -4   6  -6
 | |
| // 1st derivative(delta coding)        |   4 -3 -5   7  0 -6 -4   6  -8  10 -12
 | |
| // 2nd derivative(linear prediction)   |     -7 -2  12 -7 -6  2  10 -14  18 -22
 | |
| //                                      ---------------------------------------
 | |
| //                                      0  1  2  3  4   5  6  7   8   9  10  11
 | |
| //                                                  n in sequence
 | |
| //
 | |
| // Note that the nth derivative isn't available until sequence item n.  Earlier
 | |
| // values are coded at lower order.  For the above table, read 5 4 -7 -2 12 ...
 | |
| type nthDerivativeCoder struct {
 | |
| 	n, m   int
 | |
| 	memory [10]int32
 | |
| }
 | |
| 
 | |
| // newNthDerivativeCoder returns a new coder, where n is the derivative order of the encoder (the N in NthDerivative).
 | |
| // n must be within [0,10].
 | |
| func newNthDerivativeCoder(n int) *nthDerivativeCoder {
 | |
| 	c := &nthDerivativeCoder{n: n}
 | |
| 	if n < 0 || n > len(c.memory) {
 | |
| 		panic("unsupported n. Must be within [0,10].")
 | |
| 	}
 | |
| 	return c
 | |
| }
 | |
| 
 | |
| func (c *nthDerivativeCoder) encode(k int32) int32 {
 | |
| 	for i := 0; i < c.m; i++ {
 | |
| 		delta := k - c.memory[i]
 | |
| 		c.memory[i] = k
 | |
| 		k = delta
 | |
| 	}
 | |
| 	if c.m < c.n {
 | |
| 		c.memory[c.m] = k
 | |
| 		c.m++
 | |
| 	}
 | |
| 	return k
 | |
| }
 | |
| 
 | |
| func (c *nthDerivativeCoder) decode(k int32) int32 {
 | |
| 	if c.m < c.n {
 | |
| 		c.m++
 | |
| 	}
 | |
| 	for i := c.m - 1; i >= 0; i-- {
 | |
| 		c.memory[i] += k
 | |
| 		k = c.memory[i]
 | |
| 	}
 | |
| 	return k
 | |
| }
 |