mirror of
https://github.com/n8n-io/n8n-nodes-starter.git
synced 2025-11-10 18:47:29 -06:00
fix linting issues and rename files for clarity
This commit is contained in:
parent
c3c675ff33
commit
d618deafa3
8 changed files with 529 additions and 213 deletions
|
Before Width: | Height: | Size: 5.7 KiB After Width: | Height: | Size: 5.7 KiB |
|
Before Width: | Height: | Size: 2.7 KiB After Width: | Height: | Size: 2.7 KiB |
|
|
@ -21,7 +21,7 @@ export class ServerlessInference implements INodeType {
|
|||
outputs: [NodeConnectionType.Main],
|
||||
credentials: [
|
||||
{
|
||||
name: 'digitalOceanServerlessInference',
|
||||
name: 'digitalOceanServerlessInferenceApi',
|
||||
required: true,
|
||||
},
|
||||
],
|
||||
|
|
@ -17,7 +17,7 @@ export const textOperations: INodeProperties[] = [
|
|||
{
|
||||
name: 'Complete',
|
||||
value: 'complete',
|
||||
action: 'Create a Text Completion',
|
||||
action: 'Create a text completion',
|
||||
description: 'Create one or more completions for a given text',
|
||||
routing: {
|
||||
request: {
|
||||
|
|
@ -37,8 +37,7 @@ const completeOperations: INodeProperties[] = [
|
|||
displayName: 'Model',
|
||||
name: 'model',
|
||||
type: 'options',
|
||||
description:
|
||||
'The model which will generate the completion. <a href="https://docs.digitalocean.com/products/gradient-ai-platform/details/models/">Learn more</a>',
|
||||
description: 'The model which will generate the completion. <a href="https://docs.digitalocean.com/products/gradient-ai-platform/details/models/">Learn more</a>.',
|
||||
displayOptions: {
|
||||
show: {
|
||||
operation: ['complete'],
|
||||
|
|
@ -84,7 +83,7 @@ const completeOperations: INodeProperties[] = [
|
|||
property: 'model',
|
||||
},
|
||||
},
|
||||
default: 'openai-gpt-oss-120b',
|
||||
default: '',
|
||||
},
|
||||
{
|
||||
displayName: 'Input Type',
|
||||
|
|
@ -230,6 +229,69 @@ const sharedOperations: INodeProperties[] = [
|
|||
},
|
||||
},
|
||||
options: [
|
||||
{
|
||||
displayName: 'Frequency Penalty',
|
||||
name: 'frequencyPenalty',
|
||||
description: 'Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far.',
|
||||
type: 'number',
|
||||
default: undefined,
|
||||
typeOptions: {
|
||||
maxValue: 2,
|
||||
minValue: -2,
|
||||
numberPrecision: 2,
|
||||
},
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'frequency_penalty',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Logit Bias',
|
||||
name: 'logitBias',
|
||||
description: 'Modify the likelihood of specified tokens appearing in the completion (JSON object mapping token IDs to bias values)',
|
||||
type: 'string',
|
||||
default: '',
|
||||
placeholder: '{"50256": -100}',
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'logit_bias',
|
||||
value: '={{$parameter.logitBias ? JSON.parse($parameter.logitBias) : undefined}}',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Logprobs',
|
||||
name: 'logprobs',
|
||||
description: 'Whether to return log probabilities of the output tokens',
|
||||
type: 'boolean',
|
||||
default: false,
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'logprobs',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Max Completion Tokens',
|
||||
name: 'maxCompletionTokens',
|
||||
description:
|
||||
'The maximum number of tokens that can be generated in the chat completion. This value can be used to control costs for text generated via API.',
|
||||
type: 'number',
|
||||
default: undefined,
|
||||
typeOptions: {
|
||||
minValue: 1,
|
||||
},
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'max_completion_tokens',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Maximum Number of Tokens',
|
||||
name: 'maxTokens',
|
||||
|
|
@ -254,53 +316,17 @@ const sharedOperations: INodeProperties[] = [
|
|||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Max Completion Tokens',
|
||||
name: 'maxCompletionTokens',
|
||||
description:
|
||||
'The maximum number of tokens that can be generated in the chat completion. This value can be used to control costs for text generated via API.',
|
||||
type: 'number',
|
||||
default: undefined,
|
||||
typeOptions: {
|
||||
minValue: 1,
|
||||
},
|
||||
displayName: 'Metadata',
|
||||
name: 'metadata',
|
||||
description: 'Developer-defined metadata to attach to the completion (JSON object)',
|
||||
type: 'string',
|
||||
default: '',
|
||||
placeholder: '{"purpose": "testing"}',
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'max_completion_tokens',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Temperature',
|
||||
name: 'temperature',
|
||||
default: 0.7,
|
||||
typeOptions: { maxValue: 2, minValue: 0, numberPrecision: 2 },
|
||||
description:
|
||||
'Controls randomness: Lowering results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive.',
|
||||
type: 'number',
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'temperature',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Top P',
|
||||
name: 'topP',
|
||||
description:
|
||||
'An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass.',
|
||||
type: 'number',
|
||||
default: undefined,
|
||||
typeOptions: {
|
||||
maxValue: 1,
|
||||
minValue: 0,
|
||||
numberPrecision: 3,
|
||||
},
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'top_p',
|
||||
property: 'metadata',
|
||||
value: '={{$parameter.metadata ? JSON.parse($parameter.metadata) : undefined}}',
|
||||
},
|
||||
},
|
||||
},
|
||||
|
|
@ -321,10 +347,43 @@ const sharedOperations: INodeProperties[] = [
|
|||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Presence Penalty',
|
||||
name: 'presencePenalty',
|
||||
description: 'Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far.',
|
||||
type: 'number',
|
||||
default: undefined,
|
||||
typeOptions: {
|
||||
maxValue: 2,
|
||||
minValue: -2,
|
||||
numberPrecision: 2,
|
||||
},
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'presence_penalty',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Stop Sequences',
|
||||
name: 'stop',
|
||||
description: 'Up to 4 sequences where the API will stop generating further tokens',
|
||||
type: 'string',
|
||||
default: '',
|
||||
placeholder: 'e.g. \\n, Human:, AI:',
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'stop',
|
||||
value: '={{$parameter.stop ? $parameter.stop.split(",").map(s => s.trim()) : undefined}}',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Stream',
|
||||
name: 'stream',
|
||||
description: 'If set, partial message deltas will be sent, like in ChatGPT',
|
||||
description: 'Whether partial message deltas will be sent, like in ChatGPT',
|
||||
type: 'boolean',
|
||||
default: false,
|
||||
routing: {
|
||||
|
|
@ -349,7 +408,7 @@ const sharedOperations: INodeProperties[] = [
|
|||
{
|
||||
displayName: 'Include Usage',
|
||||
name: 'includeUsage',
|
||||
description: 'If set, an additional chunk will be streamed before the data: [DONE] message',
|
||||
description: 'Whether to include an additional chunk before the data: [DONE] message',
|
||||
type: 'boolean',
|
||||
default: false,
|
||||
},
|
||||
|
|
@ -363,133 +422,71 @@ const sharedOperations: INodeProperties[] = [
|
|||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Stop Sequences',
|
||||
name: 'stop',
|
||||
description: 'Up to 4 sequences where the API will stop generating further tokens',
|
||||
displayName: 'Temperature',
|
||||
name: 'temperature',
|
||||
default: 0.7,
|
||||
typeOptions: { maxValue: 2, minValue: 0, numberPrecision: 2 },
|
||||
description:
|
||||
'Controls randomness: Lowering results in less random completions. As the temperature approaches zero, the model will become deterministic and repetitive.',
|
||||
type: 'number',
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'temperature',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Tool Choice',
|
||||
name: 'toolChoice',
|
||||
description: 'Controls which (if any) tool is called by the model',
|
||||
type: 'options',
|
||||
options: [
|
||||
{
|
||||
name: 'Auto',
|
||||
value: 'auto',
|
||||
description: 'The model can pick between generating a message or calling one or more tools',
|
||||
},
|
||||
{
|
||||
name: 'None',
|
||||
value: 'none',
|
||||
description: 'The model will not call any tool and instead generates a message',
|
||||
},
|
||||
{
|
||||
name: 'Required',
|
||||
value: 'required',
|
||||
description: 'The model must call one or more tools',
|
||||
},
|
||||
{
|
||||
name: 'Function',
|
||||
value: 'function',
|
||||
description: 'Specifies a particular tool via {"type": "function", "function": {"name": "my_function"}}',
|
||||
},
|
||||
],
|
||||
default: 'auto',
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'tool_choice',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Tool Choice Function Name',
|
||||
name: 'toolChoiceFunctionName',
|
||||
description: 'The name of the function to call when tool choice is set to function',
|
||||
type: 'string',
|
||||
default: '',
|
||||
placeholder: 'e.g. \\n, Human:, AI:',
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'stop',
|
||||
value: '={{$parameter.stop ? $parameter.stop.split(",").map(s => s.trim()) : undefined}}',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Presence Penalty',
|
||||
name: 'presencePenalty',
|
||||
description:
|
||||
'Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far',
|
||||
type: 'number',
|
||||
default: undefined,
|
||||
typeOptions: {
|
||||
maxValue: 2,
|
||||
minValue: -2,
|
||||
numberPrecision: 2,
|
||||
},
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'presence_penalty',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Frequency Penalty',
|
||||
name: 'frequencyPenalty',
|
||||
description:
|
||||
'Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far',
|
||||
type: 'number',
|
||||
default: undefined,
|
||||
typeOptions: {
|
||||
maxValue: 2,
|
||||
minValue: -2,
|
||||
numberPrecision: 2,
|
||||
},
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'frequency_penalty',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Logprobs',
|
||||
name: 'logprobs',
|
||||
description: 'Whether to return log probabilities of the output tokens',
|
||||
type: 'boolean',
|
||||
default: false,
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'logprobs',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Top Logprobs',
|
||||
name: 'topLogprobs',
|
||||
description: 'An integer between 0 and 20 specifying the number of most likely tokens to return at each token position',
|
||||
type: 'number',
|
||||
default: undefined,
|
||||
displayOptions: {
|
||||
show: {
|
||||
logprobs: [true],
|
||||
toolChoice: ['function'],
|
||||
},
|
||||
},
|
||||
typeOptions: {
|
||||
minValue: 0,
|
||||
maxValue: 20,
|
||||
},
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'top_logprobs',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'User Identifier',
|
||||
name: 'user',
|
||||
description: 'A unique identifier representing your end-user, which can help monitor and detect abuse',
|
||||
type: 'string',
|
||||
default: '',
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'user',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Logit Bias',
|
||||
name: 'logitBias',
|
||||
description: 'Modify the likelihood of specified tokens appearing in the completion (JSON object mapping token IDs to bias values)',
|
||||
type: 'string',
|
||||
default: '',
|
||||
placeholder: '{"50256": -100}',
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'logit_bias',
|
||||
value: '={{$parameter.logitBias ? JSON.parse($parameter.logitBias) : undefined}}',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Metadata',
|
||||
name: 'metadata',
|
||||
description: 'Developer-defined metadata to attach to the completion (JSON object)',
|
||||
type: 'string',
|
||||
default: '',
|
||||
placeholder: '{"purpose": "testing"}',
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'metadata',
|
||||
value: '={{$parameter.metadata ? JSON.parse($parameter.metadata) : undefined}}',
|
||||
property: 'tool_choice',
|
||||
value: '={{"type": "function", "function": {"name": $parameter.toolChoiceFunctionName}}}',
|
||||
},
|
||||
},
|
||||
},
|
||||
|
|
@ -553,56 +550,55 @@ const sharedOperations: INodeProperties[] = [
|
|||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Tool Choice',
|
||||
name: 'toolChoice',
|
||||
description: 'Controls which (if any) tool is called by the model',
|
||||
type: 'options',
|
||||
options: [
|
||||
{
|
||||
name: 'Auto',
|
||||
value: 'auto',
|
||||
description: 'The model can pick between generating a message or calling one or more tools',
|
||||
displayName: 'Top Logprobs',
|
||||
name: 'topLogprobs',
|
||||
description: 'An integer between 0 and 20 specifying the number of most likely tokens to return at each token position',
|
||||
type: 'number',
|
||||
default: undefined,
|
||||
displayOptions: {
|
||||
show: {
|
||||
logprobs: [true],
|
||||
},
|
||||
{
|
||||
name: 'None',
|
||||
value: 'none',
|
||||
description: 'The model will not call any tool and instead generates a message',
|
||||
},
|
||||
{
|
||||
name: 'Required',
|
||||
value: 'required',
|
||||
description: 'The model must call one or more tools',
|
||||
},
|
||||
{
|
||||
name: 'Function',
|
||||
value: 'function',
|
||||
description: 'Specifies a particular tool via {"type": "function", "function": {"name": "my_function"}}',
|
||||
},
|
||||
],
|
||||
default: 'auto',
|
||||
},
|
||||
typeOptions: {
|
||||
minValue: 0,
|
||||
maxValue: 20,
|
||||
},
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'tool_choice',
|
||||
property: 'top_logprobs',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'Tool Choice Function Name',
|
||||
name: 'toolChoiceFunctionName',
|
||||
description: 'The name of the function to call when tool choice is set to function',
|
||||
type: 'string',
|
||||
default: '',
|
||||
displayOptions: {
|
||||
show: {
|
||||
toolChoice: ['function'],
|
||||
},
|
||||
displayName: 'Top P',
|
||||
name: 'topP',
|
||||
description: 'An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the tokens with top_p probability mass',
|
||||
type: 'number',
|
||||
default: undefined,
|
||||
typeOptions: {
|
||||
maxValue: 1,
|
||||
minValue: 0,
|
||||
numberPrecision: 3,
|
||||
},
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'tool_choice',
|
||||
value: '={{"type": "function", "function": {"name": $parameter.toolChoiceFunctionName}}}',
|
||||
property: 'top_p',
|
||||
},
|
||||
},
|
||||
},
|
||||
{
|
||||
displayName: 'User Identifier',
|
||||
name: 'user',
|
||||
description: 'A unique identifier representing your end-user, which can help monitor and detect abuse',
|
||||
type: 'string',
|
||||
default: '',
|
||||
routing: {
|
||||
send: {
|
||||
type: 'body',
|
||||
property: 'user',
|
||||
},
|
||||
},
|
||||
},
|
||||
Loading…
Add table
Add a link
Reference in a new issue