mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-30 22:52:25 -05:00 
			
		
		
		
	- github.com/KimMachineGun/automemlimit v0.7.4 - github.com/miekg/dns v1.1.67 - github.com/minio/minio-go/v7 v7.0.95 - github.com/spf13/pflag v1.0.7 - github.com/tdewolff/minify/v2 v2.23.9 - github.com/uptrace/bun v1.2.15 - github.com/uptrace/bun/dialect/pgdialect v1.2.15 - github.com/uptrace/bun/dialect/sqlitedialect v1.2.15 - github.com/uptrace/bun/extra/bunotel v1.2.15 - golang.org/x/image v0.29.0 - golang.org/x/net v0.42.0 Reviewed-on: https://codeberg.org/superseriousbusiness/gotosocial/pulls/4339 Co-authored-by: kim <grufwub@gmail.com> Co-committed-by: kim <grufwub@gmail.com>
		
			
				
	
	
		
			500 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			500 lines
		
	
	
	
		
			14 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2014 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package regexp
 | |
| 
 | |
| import (
 | |
| 	"regexp/syntax"
 | |
| 	"slices"
 | |
| 	"strings"
 | |
| 	"unicode"
 | |
| 	"unicode/utf8"
 | |
| )
 | |
| 
 | |
| // "One-pass" regexp execution.
 | |
| // Some regexps can be analyzed to determine that they never need
 | |
| // backtracking: they are guaranteed to run in one pass over the string
 | |
| // without bothering to save all the usual NFA state.
 | |
| // Detect those and execute them more quickly.
 | |
| 
 | |
| // A onePassProg is a compiled one-pass regular expression program.
 | |
| // It is the same as syntax.Prog except for the use of onePassInst.
 | |
| type onePassProg struct {
 | |
| 	Inst   []onePassInst
 | |
| 	Start  int // index of start instruction
 | |
| 	NumCap int // number of InstCapture insts in re
 | |
| }
 | |
| 
 | |
| // A onePassInst is a single instruction in a one-pass regular expression program.
 | |
| // It is the same as syntax.Inst except for the new 'Next' field.
 | |
| type onePassInst struct {
 | |
| 	syntax.Inst
 | |
| 	Next []uint32
 | |
| }
 | |
| 
 | |
| // onePassPrefix returns a literal string that all matches for the
 | |
| // regexp must start with. Complete is true if the prefix
 | |
| // is the entire match. Pc is the index of the last rune instruction
 | |
| // in the string. The onePassPrefix skips over the mandatory
 | |
| // EmptyBeginText.
 | |
| func onePassPrefix(p *syntax.Prog) (prefix string, complete bool, pc uint32) {
 | |
| 	i := &p.Inst[p.Start]
 | |
| 	if i.Op != syntax.InstEmptyWidth || (syntax.EmptyOp(i.Arg))&syntax.EmptyBeginText == 0 {
 | |
| 		return "", i.Op == syntax.InstMatch, uint32(p.Start)
 | |
| 	}
 | |
| 	pc = i.Out
 | |
| 	i = &p.Inst[pc]
 | |
| 	for i.Op == syntax.InstNop {
 | |
| 		pc = i.Out
 | |
| 		i = &p.Inst[pc]
 | |
| 	}
 | |
| 	// Avoid allocation of buffer if prefix is empty.
 | |
| 	if iop(i) != syntax.InstRune || len(i.Rune) != 1 {
 | |
| 		return "", i.Op == syntax.InstMatch, uint32(p.Start)
 | |
| 	}
 | |
| 
 | |
| 	// Have prefix; gather characters.
 | |
| 	var buf strings.Builder
 | |
| 	for iop(i) == syntax.InstRune && len(i.Rune) == 1 && syntax.Flags(i.Arg)&syntax.FoldCase == 0 && i.Rune[0] != utf8.RuneError {
 | |
| 		buf.WriteRune(i.Rune[0])
 | |
| 		pc, i = i.Out, &p.Inst[i.Out]
 | |
| 	}
 | |
| 	if i.Op == syntax.InstEmptyWidth &&
 | |
| 		syntax.EmptyOp(i.Arg)&syntax.EmptyEndText != 0 &&
 | |
| 		p.Inst[i.Out].Op == syntax.InstMatch {
 | |
| 		complete = true
 | |
| 	}
 | |
| 	return buf.String(), complete, pc
 | |
| }
 | |
| 
 | |
| // onePassNext selects the next actionable state of the prog, based on the input character.
 | |
| // It should only be called when i.Op == InstAlt or InstAltMatch, and from the one-pass machine.
 | |
| // One of the alternates may ultimately lead without input to end of line. If the instruction
 | |
| // is InstAltMatch the path to the InstMatch is in i.Out, the normal node in i.Next.
 | |
| func onePassNext(i *onePassInst, r rune) uint32 {
 | |
| 	next := i.MatchRunePos(r)
 | |
| 	if next >= 0 {
 | |
| 		return i.Next[next]
 | |
| 	}
 | |
| 	if i.Op == syntax.InstAltMatch {
 | |
| 		return i.Out
 | |
| 	}
 | |
| 	return 0
 | |
| }
 | |
| 
 | |
| func iop(i *syntax.Inst) syntax.InstOp {
 | |
| 	op := i.Op
 | |
| 	switch op {
 | |
| 	case syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
 | |
| 		op = syntax.InstRune
 | |
| 	}
 | |
| 	return op
 | |
| }
 | |
| 
 | |
| // Sparse Array implementation is used as a queueOnePass.
 | |
| type queueOnePass struct {
 | |
| 	sparse          []uint32
 | |
| 	dense           []uint32
 | |
| 	size, nextIndex uint32
 | |
| }
 | |
| 
 | |
| func (q *queueOnePass) empty() bool {
 | |
| 	return q.nextIndex >= q.size
 | |
| }
 | |
| 
 | |
| func (q *queueOnePass) next() (n uint32) {
 | |
| 	n = q.dense[q.nextIndex]
 | |
| 	q.nextIndex++
 | |
| 	return
 | |
| }
 | |
| 
 | |
| func (q *queueOnePass) clear() {
 | |
| 	q.size = 0
 | |
| 	q.nextIndex = 0
 | |
| }
 | |
| 
 | |
| func (q *queueOnePass) contains(u uint32) bool {
 | |
| 	if u >= uint32(len(q.sparse)) {
 | |
| 		return false
 | |
| 	}
 | |
| 	return q.sparse[u] < q.size && q.dense[q.sparse[u]] == u
 | |
| }
 | |
| 
 | |
| func (q *queueOnePass) insert(u uint32) {
 | |
| 	if !q.contains(u) {
 | |
| 		q.insertNew(u)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (q *queueOnePass) insertNew(u uint32) {
 | |
| 	if u >= uint32(len(q.sparse)) {
 | |
| 		return
 | |
| 	}
 | |
| 	q.sparse[u] = q.size
 | |
| 	q.dense[q.size] = u
 | |
| 	q.size++
 | |
| }
 | |
| 
 | |
| func newQueue(size int) (q *queueOnePass) {
 | |
| 	return &queueOnePass{
 | |
| 		sparse: make([]uint32, size),
 | |
| 		dense:  make([]uint32, size),
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // mergeRuneSets merges two non-intersecting runesets, and returns the merged result,
 | |
| // and a NextIp array. The idea is that if a rune matches the OnePassRunes at index
 | |
| // i, NextIp[i/2] is the target. If the input sets intersect, an empty runeset and a
 | |
| // NextIp array with the single element mergeFailed is returned.
 | |
| // The code assumes that both inputs contain ordered and non-intersecting rune pairs.
 | |
| const mergeFailed = uint32(0xffffffff)
 | |
| 
 | |
| var (
 | |
| 	noRune = []rune{}
 | |
| 	noNext = []uint32{mergeFailed}
 | |
| )
 | |
| 
 | |
| func mergeRuneSets(leftRunes, rightRunes *[]rune, leftPC, rightPC uint32) ([]rune, []uint32) {
 | |
| 	leftLen := len(*leftRunes)
 | |
| 	rightLen := len(*rightRunes)
 | |
| 	if leftLen&0x1 != 0 || rightLen&0x1 != 0 {
 | |
| 		panic("mergeRuneSets odd length []rune")
 | |
| 	}
 | |
| 	var (
 | |
| 		lx, rx int
 | |
| 	)
 | |
| 	merged := make([]rune, 0)
 | |
| 	next := make([]uint32, 0)
 | |
| 	ok := true
 | |
| 	defer func() {
 | |
| 		if !ok {
 | |
| 			merged = nil
 | |
| 			next = nil
 | |
| 		}
 | |
| 	}()
 | |
| 
 | |
| 	ix := -1
 | |
| 	extend := func(newLow *int, newArray *[]rune, pc uint32) bool {
 | |
| 		if ix > 0 && (*newArray)[*newLow] <= merged[ix] {
 | |
| 			return false
 | |
| 		}
 | |
| 		merged = append(merged, (*newArray)[*newLow], (*newArray)[*newLow+1])
 | |
| 		*newLow += 2
 | |
| 		ix += 2
 | |
| 		next = append(next, pc)
 | |
| 		return true
 | |
| 	}
 | |
| 
 | |
| 	for lx < leftLen || rx < rightLen {
 | |
| 		switch {
 | |
| 		case rx >= rightLen:
 | |
| 			ok = extend(&lx, leftRunes, leftPC)
 | |
| 		case lx >= leftLen:
 | |
| 			ok = extend(&rx, rightRunes, rightPC)
 | |
| 		case (*rightRunes)[rx] < (*leftRunes)[lx]:
 | |
| 			ok = extend(&rx, rightRunes, rightPC)
 | |
| 		default:
 | |
| 			ok = extend(&lx, leftRunes, leftPC)
 | |
| 		}
 | |
| 		if !ok {
 | |
| 			return noRune, noNext
 | |
| 		}
 | |
| 	}
 | |
| 	return merged, next
 | |
| }
 | |
| 
 | |
| // cleanupOnePass drops working memory, and restores certain shortcut instructions.
 | |
| func cleanupOnePass(prog *onePassProg, original *syntax.Prog) {
 | |
| 	for ix, instOriginal := range original.Inst {
 | |
| 		switch instOriginal.Op {
 | |
| 		case syntax.InstAlt, syntax.InstAltMatch, syntax.InstRune:
 | |
| 		case syntax.InstCapture, syntax.InstEmptyWidth, syntax.InstNop, syntax.InstMatch, syntax.InstFail:
 | |
| 			prog.Inst[ix].Next = nil
 | |
| 		case syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
 | |
| 			prog.Inst[ix].Next = nil
 | |
| 			prog.Inst[ix] = onePassInst{Inst: instOriginal}
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // onePassCopy creates a copy of the original Prog, as we'll be modifying it.
 | |
| func onePassCopy(prog *syntax.Prog) *onePassProg {
 | |
| 	p := &onePassProg{
 | |
| 		Start:  prog.Start,
 | |
| 		NumCap: prog.NumCap,
 | |
| 		Inst:   make([]onePassInst, len(prog.Inst)),
 | |
| 	}
 | |
| 	for i, inst := range prog.Inst {
 | |
| 		p.Inst[i] = onePassInst{Inst: inst}
 | |
| 	}
 | |
| 
 | |
| 	// rewrites one or more common Prog constructs that enable some otherwise
 | |
| 	// non-onepass Progs to be onepass. A:BD (for example) means an InstAlt at
 | |
| 	// ip A, that points to ips B & C.
 | |
| 	// A:BC + B:DA => A:BC + B:CD
 | |
| 	// A:BC + B:DC => A:DC + B:DC
 | |
| 	for pc := range p.Inst {
 | |
| 		switch p.Inst[pc].Op {
 | |
| 		default:
 | |
| 			continue
 | |
| 		case syntax.InstAlt, syntax.InstAltMatch:
 | |
| 			// A:Bx + B:Ay
 | |
| 			p_A_Other := &p.Inst[pc].Out
 | |
| 			p_A_Alt := &p.Inst[pc].Arg
 | |
| 			// make sure a target is another Alt
 | |
| 			instAlt := p.Inst[*p_A_Alt]
 | |
| 			if !(instAlt.Op == syntax.InstAlt || instAlt.Op == syntax.InstAltMatch) {
 | |
| 				p_A_Alt, p_A_Other = p_A_Other, p_A_Alt
 | |
| 				instAlt = p.Inst[*p_A_Alt]
 | |
| 				if !(instAlt.Op == syntax.InstAlt || instAlt.Op == syntax.InstAltMatch) {
 | |
| 					continue
 | |
| 				}
 | |
| 			}
 | |
| 			instOther := p.Inst[*p_A_Other]
 | |
| 			// Analyzing both legs pointing to Alts is for another day
 | |
| 			if instOther.Op == syntax.InstAlt || instOther.Op == syntax.InstAltMatch {
 | |
| 				// too complicated
 | |
| 				continue
 | |
| 			}
 | |
| 			// simple empty transition loop
 | |
| 			// A:BC + B:DA => A:BC + B:DC
 | |
| 			p_B_Alt := &p.Inst[*p_A_Alt].Out
 | |
| 			p_B_Other := &p.Inst[*p_A_Alt].Arg
 | |
| 			patch := false
 | |
| 			if instAlt.Out == uint32(pc) {
 | |
| 				patch = true
 | |
| 			} else if instAlt.Arg == uint32(pc) {
 | |
| 				patch = true
 | |
| 				p_B_Alt, p_B_Other = p_B_Other, p_B_Alt
 | |
| 			}
 | |
| 			if patch {
 | |
| 				*p_B_Alt = *p_A_Other
 | |
| 			}
 | |
| 
 | |
| 			// empty transition to common target
 | |
| 			// A:BC + B:DC => A:DC + B:DC
 | |
| 			if *p_A_Other == *p_B_Alt {
 | |
| 				*p_A_Alt = *p_B_Other
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return p
 | |
| }
 | |
| 
 | |
| var anyRuneNotNL = []rune{0, '\n' - 1, '\n' + 1, unicode.MaxRune}
 | |
| var anyRune = []rune{0, unicode.MaxRune}
 | |
| 
 | |
| // makeOnePass creates a onepass Prog, if possible. It is possible if at any alt,
 | |
| // the match engine can always tell which branch to take. The routine may modify
 | |
| // p if it is turned into a onepass Prog. If it isn't possible for this to be a
 | |
| // onepass Prog, the Prog nil is returned. makeOnePass is recursive
 | |
| // to the size of the Prog.
 | |
| func makeOnePass(p *onePassProg) *onePassProg {
 | |
| 	// If the machine is very long, it's not worth the time to check if we can use one pass.
 | |
| 	if len(p.Inst) >= 1000 {
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	var (
 | |
| 		instQueue    = newQueue(len(p.Inst))
 | |
| 		visitQueue   = newQueue(len(p.Inst))
 | |
| 		check        func(uint32, []bool) bool
 | |
| 		onePassRunes = make([][]rune, len(p.Inst))
 | |
| 	)
 | |
| 
 | |
| 	// check that paths from Alt instructions are unambiguous, and rebuild the new
 | |
| 	// program as a onepass program
 | |
| 	check = func(pc uint32, m []bool) (ok bool) {
 | |
| 		ok = true
 | |
| 		inst := &p.Inst[pc]
 | |
| 		if visitQueue.contains(pc) {
 | |
| 			return
 | |
| 		}
 | |
| 		visitQueue.insert(pc)
 | |
| 		switch inst.Op {
 | |
| 		case syntax.InstAlt, syntax.InstAltMatch:
 | |
| 			ok = check(inst.Out, m) && check(inst.Arg, m)
 | |
| 			// check no-input paths to InstMatch
 | |
| 			matchOut := m[inst.Out]
 | |
| 			matchArg := m[inst.Arg]
 | |
| 			if matchOut && matchArg {
 | |
| 				ok = false
 | |
| 				break
 | |
| 			}
 | |
| 			// Match on empty goes in inst.Out
 | |
| 			if matchArg {
 | |
| 				inst.Out, inst.Arg = inst.Arg, inst.Out
 | |
| 				matchOut, matchArg = matchArg, matchOut
 | |
| 			}
 | |
| 			if matchOut {
 | |
| 				m[pc] = true
 | |
| 				inst.Op = syntax.InstAltMatch
 | |
| 			}
 | |
| 
 | |
| 			// build a dispatch operator from the two legs of the alt.
 | |
| 			onePassRunes[pc], inst.Next = mergeRuneSets(
 | |
| 				&onePassRunes[inst.Out], &onePassRunes[inst.Arg], inst.Out, inst.Arg)
 | |
| 			if len(inst.Next) > 0 && inst.Next[0] == mergeFailed {
 | |
| 				ok = false
 | |
| 				break
 | |
| 			}
 | |
| 		case syntax.InstCapture, syntax.InstNop:
 | |
| 			ok = check(inst.Out, m)
 | |
| 			m[pc] = m[inst.Out]
 | |
| 			// pass matching runes back through these no-ops.
 | |
| 			onePassRunes[pc] = append([]rune{}, onePassRunes[inst.Out]...)
 | |
| 			inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
 | |
| 			for i := range inst.Next {
 | |
| 				inst.Next[i] = inst.Out
 | |
| 			}
 | |
| 		case syntax.InstEmptyWidth:
 | |
| 			ok = check(inst.Out, m)
 | |
| 			m[pc] = m[inst.Out]
 | |
| 			onePassRunes[pc] = append([]rune{}, onePassRunes[inst.Out]...)
 | |
| 			inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
 | |
| 			for i := range inst.Next {
 | |
| 				inst.Next[i] = inst.Out
 | |
| 			}
 | |
| 		case syntax.InstMatch, syntax.InstFail:
 | |
| 			m[pc] = inst.Op == syntax.InstMatch
 | |
| 		case syntax.InstRune:
 | |
| 			m[pc] = false
 | |
| 			if len(inst.Next) > 0 {
 | |
| 				break
 | |
| 			}
 | |
| 			instQueue.insert(inst.Out)
 | |
| 			if len(inst.Rune) == 0 {
 | |
| 				onePassRunes[pc] = []rune{}
 | |
| 				inst.Next = []uint32{inst.Out}
 | |
| 				break
 | |
| 			}
 | |
| 			runes := make([]rune, 0)
 | |
| 			if len(inst.Rune) == 1 && syntax.Flags(inst.Arg)&syntax.FoldCase != 0 {
 | |
| 				r0 := inst.Rune[0]
 | |
| 				runes = append(runes, r0, r0)
 | |
| 				for r1 := unicode.SimpleFold(r0); r1 != r0; r1 = unicode.SimpleFold(r1) {
 | |
| 					runes = append(runes, r1, r1)
 | |
| 				}
 | |
| 				slices.Sort(runes)
 | |
| 			} else {
 | |
| 				runes = append(runes, inst.Rune...)
 | |
| 			}
 | |
| 			onePassRunes[pc] = runes
 | |
| 			inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
 | |
| 			for i := range inst.Next {
 | |
| 				inst.Next[i] = inst.Out
 | |
| 			}
 | |
| 			inst.Op = syntax.InstRune
 | |
| 		case syntax.InstRune1:
 | |
| 			m[pc] = false
 | |
| 			if len(inst.Next) > 0 {
 | |
| 				break
 | |
| 			}
 | |
| 			instQueue.insert(inst.Out)
 | |
| 			runes := []rune{}
 | |
| 			// expand case-folded runes
 | |
| 			if syntax.Flags(inst.Arg)&syntax.FoldCase != 0 {
 | |
| 				r0 := inst.Rune[0]
 | |
| 				runes = append(runes, r0, r0)
 | |
| 				for r1 := unicode.SimpleFold(r0); r1 != r0; r1 = unicode.SimpleFold(r1) {
 | |
| 					runes = append(runes, r1, r1)
 | |
| 				}
 | |
| 				slices.Sort(runes)
 | |
| 			} else {
 | |
| 				runes = append(runes, inst.Rune[0], inst.Rune[0])
 | |
| 			}
 | |
| 			onePassRunes[pc] = runes
 | |
| 			inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
 | |
| 			for i := range inst.Next {
 | |
| 				inst.Next[i] = inst.Out
 | |
| 			}
 | |
| 			inst.Op = syntax.InstRune
 | |
| 		case syntax.InstRuneAny:
 | |
| 			m[pc] = false
 | |
| 			if len(inst.Next) > 0 {
 | |
| 				break
 | |
| 			}
 | |
| 			instQueue.insert(inst.Out)
 | |
| 			onePassRunes[pc] = append([]rune{}, anyRune...)
 | |
| 			inst.Next = []uint32{inst.Out}
 | |
| 		case syntax.InstRuneAnyNotNL:
 | |
| 			m[pc] = false
 | |
| 			if len(inst.Next) > 0 {
 | |
| 				break
 | |
| 			}
 | |
| 			instQueue.insert(inst.Out)
 | |
| 			onePassRunes[pc] = append([]rune{}, anyRuneNotNL...)
 | |
| 			inst.Next = make([]uint32, len(onePassRunes[pc])/2+1)
 | |
| 			for i := range inst.Next {
 | |
| 				inst.Next[i] = inst.Out
 | |
| 			}
 | |
| 		}
 | |
| 		return
 | |
| 	}
 | |
| 
 | |
| 	instQueue.clear()
 | |
| 	instQueue.insert(uint32(p.Start))
 | |
| 	m := make([]bool, len(p.Inst))
 | |
| 	for !instQueue.empty() {
 | |
| 		visitQueue.clear()
 | |
| 		pc := instQueue.next()
 | |
| 		if !check(pc, m) {
 | |
| 			p = nil
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	if p != nil {
 | |
| 		for i := range p.Inst {
 | |
| 			p.Inst[i].Rune = onePassRunes[i]
 | |
| 		}
 | |
| 	}
 | |
| 	return p
 | |
| }
 | |
| 
 | |
| // compileOnePass returns a new *syntax.Prog suitable for onePass execution if the original Prog
 | |
| // can be recharacterized as a one-pass regexp program, or syntax.nil if the
 | |
| // Prog cannot be converted. For a one pass prog, the fundamental condition that must
 | |
| // be true is: at any InstAlt, there must be no ambiguity about what branch to  take.
 | |
| func compileOnePass(prog *syntax.Prog) (p *onePassProg) {
 | |
| 	if prog.Start == 0 {
 | |
| 		return nil
 | |
| 	}
 | |
| 	// onepass regexp is anchored
 | |
| 	if prog.Inst[prog.Start].Op != syntax.InstEmptyWidth ||
 | |
| 		syntax.EmptyOp(prog.Inst[prog.Start].Arg)&syntax.EmptyBeginText != syntax.EmptyBeginText {
 | |
| 		return nil
 | |
| 	}
 | |
| 	// every instruction leading to InstMatch must be EmptyEndText
 | |
| 	for _, inst := range prog.Inst {
 | |
| 		opOut := prog.Inst[inst.Out].Op
 | |
| 		switch inst.Op {
 | |
| 		default:
 | |
| 			if opOut == syntax.InstMatch {
 | |
| 				return nil
 | |
| 			}
 | |
| 		case syntax.InstAlt, syntax.InstAltMatch:
 | |
| 			if opOut == syntax.InstMatch || prog.Inst[inst.Arg].Op == syntax.InstMatch {
 | |
| 				return nil
 | |
| 			}
 | |
| 		case syntax.InstEmptyWidth:
 | |
| 			if opOut == syntax.InstMatch {
 | |
| 				if syntax.EmptyOp(inst.Arg)&syntax.EmptyEndText == syntax.EmptyEndText {
 | |
| 					continue
 | |
| 				}
 | |
| 				return nil
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	// Creates a slightly optimized copy of the original Prog
 | |
| 	// that cleans up some Prog idioms that block valid onepass programs
 | |
| 	p = onePassCopy(prog)
 | |
| 
 | |
| 	// checkAmbiguity on InstAlts, build onepass Prog if possible
 | |
| 	p = makeOnePass(p)
 | |
| 
 | |
| 	if p != nil {
 | |
| 		cleanupOnePass(p, prog)
 | |
| 	}
 | |
| 	return p
 | |
| }
 |