mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-11-04 08:22:25 -06:00 
			
		
		
		
	- github.com/KimMachineGun/automemlimit v0.7.4 - github.com/miekg/dns v1.1.67 - github.com/minio/minio-go/v7 v7.0.95 - github.com/spf13/pflag v1.0.7 - github.com/tdewolff/minify/v2 v2.23.9 - github.com/uptrace/bun v1.2.15 - github.com/uptrace/bun/dialect/pgdialect v1.2.15 - github.com/uptrace/bun/dialect/sqlitedialect v1.2.15 - github.com/uptrace/bun/extra/bunotel v1.2.15 - golang.org/x/image v0.29.0 - golang.org/x/net v0.42.0 Reviewed-on: https://codeberg.org/superseriousbusiness/gotosocial/pulls/4339 Co-authored-by: kim <grufwub@gmail.com> Co-committed-by: kim <grufwub@gmail.com>
		
			
				
	
	
		
			1304 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1304 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
// Copyright 2009 The Go Authors. All rights reserved.
 | 
						|
// Use of this source code is governed by a BSD-style
 | 
						|
// license that can be found in the LICENSE file.
 | 
						|
 | 
						|
// Package regexp implements regular expression search.
 | 
						|
//
 | 
						|
// The syntax of the regular expressions accepted is the same
 | 
						|
// general syntax used by Perl, Python, and other languages.
 | 
						|
// More precisely, it is the syntax accepted by RE2 and described at
 | 
						|
// https://golang.org/s/re2syntax, except for \C.
 | 
						|
// For an overview of the syntax, see the [regexp/syntax] package.
 | 
						|
//
 | 
						|
// The regexp implementation provided by this package is
 | 
						|
// guaranteed to run in time linear in the size of the input.
 | 
						|
// (This is a property not guaranteed by most open source
 | 
						|
// implementations of regular expressions.) For more information
 | 
						|
// about this property, see
 | 
						|
//
 | 
						|
//	https://swtch.com/~rsc/regexp/regexp1.html
 | 
						|
//
 | 
						|
// or any book about automata theory.
 | 
						|
//
 | 
						|
// All characters are UTF-8-encoded code points.
 | 
						|
// Following [utf8.DecodeRune], each byte of an invalid UTF-8 sequence
 | 
						|
// is treated as if it encoded utf8.RuneError (U+FFFD).
 | 
						|
//
 | 
						|
// There are 16 methods of [Regexp] that match a regular expression and identify
 | 
						|
// the matched text. Their names are matched by this regular expression:
 | 
						|
//
 | 
						|
//	Find(All)?(String)?(Submatch)?(Index)?
 | 
						|
//
 | 
						|
// If 'All' is present, the routine matches successive non-overlapping
 | 
						|
// matches of the entire expression. Empty matches abutting a preceding
 | 
						|
// match are ignored. The return value is a slice containing the successive
 | 
						|
// return values of the corresponding non-'All' routine. These routines take
 | 
						|
// an extra integer argument, n. If n >= 0, the function returns at most n
 | 
						|
// matches/submatches; otherwise, it returns all of them.
 | 
						|
//
 | 
						|
// If 'String' is present, the argument is a string; otherwise it is a slice
 | 
						|
// of bytes; return values are adjusted as appropriate.
 | 
						|
//
 | 
						|
// If 'Submatch' is present, the return value is a slice identifying the
 | 
						|
// successive submatches of the expression. Submatches are matches of
 | 
						|
// parenthesized subexpressions (also known as capturing groups) within the
 | 
						|
// regular expression, numbered from left to right in order of opening
 | 
						|
// parenthesis. Submatch 0 is the match of the entire expression, submatch 1 is
 | 
						|
// the match of the first parenthesized subexpression, and so on.
 | 
						|
//
 | 
						|
// If 'Index' is present, matches and submatches are identified by byte index
 | 
						|
// pairs within the input string: result[2*n:2*n+2] identifies the indexes of
 | 
						|
// the nth submatch. The pair for n==0 identifies the match of the entire
 | 
						|
// expression. If 'Index' is not present, the match is identified by the text
 | 
						|
// of the match/submatch. If an index is negative or text is nil, it means that
 | 
						|
// subexpression did not match any string in the input. For 'String' versions
 | 
						|
// an empty string means either no match or an empty match.
 | 
						|
//
 | 
						|
// There is also a subset of the methods that can be applied to text read
 | 
						|
// from a RuneReader:
 | 
						|
//
 | 
						|
//	MatchReader, FindReaderIndex, FindReaderSubmatchIndex
 | 
						|
//
 | 
						|
// This set may grow. Note that regular expression matches may need to
 | 
						|
// examine text beyond the text returned by a match, so the methods that
 | 
						|
// match text from a RuneReader may read arbitrarily far into the input
 | 
						|
// before returning.
 | 
						|
//
 | 
						|
// (There are a few other methods that do not match this pattern.)
 | 
						|
package regexp
 | 
						|
 | 
						|
import (
 | 
						|
	"bytes"
 | 
						|
	"io"
 | 
						|
	"regexp/syntax"
 | 
						|
	"strconv"
 | 
						|
	"strings"
 | 
						|
	"sync"
 | 
						|
	"unicode"
 | 
						|
	"unicode/utf8"
 | 
						|
)
 | 
						|
 | 
						|
// Regexp is the representation of a compiled regular expression.
 | 
						|
// A Regexp is safe for concurrent use by multiple goroutines,
 | 
						|
// except for configuration methods, such as [Regexp.Longest].
 | 
						|
type Regexp struct {
 | 
						|
	expr           string       // as passed to Compile
 | 
						|
	prog           *syntax.Prog // compiled program
 | 
						|
	onepass        *onePassProg // onepass program or nil
 | 
						|
	numSubexp      int
 | 
						|
	maxBitStateLen int
 | 
						|
	subexpNames    []string
 | 
						|
	prefix         string         // required prefix in unanchored matches
 | 
						|
	prefixBytes    []byte         // prefix, as a []byte
 | 
						|
	prefixRune     rune           // first rune in prefix
 | 
						|
	prefixEnd      uint32         // pc for last rune in prefix
 | 
						|
	mpool          int            // pool for machines
 | 
						|
	matchcap       int            // size of recorded match lengths
 | 
						|
	prefixComplete bool           // prefix is the entire regexp
 | 
						|
	cond           syntax.EmptyOp // empty-width conditions required at start of match
 | 
						|
	minInputLen    int            // minimum length of the input in bytes
 | 
						|
 | 
						|
	// This field can be modified by the Longest method,
 | 
						|
	// but it is otherwise read-only.
 | 
						|
	longest bool // whether regexp prefers leftmost-longest match
 | 
						|
}
 | 
						|
 | 
						|
// String returns the source text used to compile the regular expression.
 | 
						|
func (re *Regexp) String() string {
 | 
						|
	return re.expr
 | 
						|
}
 | 
						|
 | 
						|
// Copy returns a new [Regexp] object copied from re.
 | 
						|
// Calling [Regexp.Longest] on one copy does not affect another.
 | 
						|
//
 | 
						|
// Deprecated: In earlier releases, when using a [Regexp] in multiple goroutines,
 | 
						|
// giving each goroutine its own copy helped to avoid lock contention.
 | 
						|
// As of Go 1.12, using Copy is no longer necessary to avoid lock contention.
 | 
						|
// Copy may still be appropriate if the reason for its use is to make
 | 
						|
// two copies with different [Regexp.Longest] settings.
 | 
						|
func (re *Regexp) Copy() *Regexp {
 | 
						|
	re2 := *re
 | 
						|
	return &re2
 | 
						|
}
 | 
						|
 | 
						|
// Compile parses a regular expression and returns, if successful,
 | 
						|
// a [Regexp] object that can be used to match against text.
 | 
						|
//
 | 
						|
// When matching against text, the regexp returns a match that
 | 
						|
// begins as early as possible in the input (leftmost), and among those
 | 
						|
// it chooses the one that a backtracking search would have found first.
 | 
						|
// This so-called leftmost-first matching is the same semantics
 | 
						|
// that Perl, Python, and other implementations use, although this
 | 
						|
// package implements it without the expense of backtracking.
 | 
						|
// For POSIX leftmost-longest matching, see [CompilePOSIX].
 | 
						|
func Compile(expr string) (*Regexp, error) {
 | 
						|
	return compile(expr, syntax.Perl, false)
 | 
						|
}
 | 
						|
 | 
						|
// CompilePOSIX is like [Compile] but restricts the regular expression
 | 
						|
// to POSIX ERE (egrep) syntax and changes the match semantics to
 | 
						|
// leftmost-longest.
 | 
						|
//
 | 
						|
// That is, when matching against text, the regexp returns a match that
 | 
						|
// begins as early as possible in the input (leftmost), and among those
 | 
						|
// it chooses a match that is as long as possible.
 | 
						|
// This so-called leftmost-longest matching is the same semantics
 | 
						|
// that early regular expression implementations used and that POSIX
 | 
						|
// specifies.
 | 
						|
//
 | 
						|
// However, there can be multiple leftmost-longest matches, with different
 | 
						|
// submatch choices, and here this package diverges from POSIX.
 | 
						|
// Among the possible leftmost-longest matches, this package chooses
 | 
						|
// the one that a backtracking search would have found first, while POSIX
 | 
						|
// specifies that the match be chosen to maximize the length of the first
 | 
						|
// subexpression, then the second, and so on from left to right.
 | 
						|
// The POSIX rule is computationally prohibitive and not even well-defined.
 | 
						|
// See https://swtch.com/~rsc/regexp/regexp2.html#posix for details.
 | 
						|
func CompilePOSIX(expr string) (*Regexp, error) {
 | 
						|
	return compile(expr, syntax.POSIX, true)
 | 
						|
}
 | 
						|
 | 
						|
// Longest makes future searches prefer the leftmost-longest match.
 | 
						|
// That is, when matching against text, the regexp returns a match that
 | 
						|
// begins as early as possible in the input (leftmost), and among those
 | 
						|
// it chooses a match that is as long as possible.
 | 
						|
// This method modifies the [Regexp] and may not be called concurrently
 | 
						|
// with any other methods.
 | 
						|
func (re *Regexp) Longest() {
 | 
						|
	re.longest = true
 | 
						|
}
 | 
						|
 | 
						|
func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
 | 
						|
	re, err := syntax.Parse(expr, mode)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	maxCap := re.MaxCap()
 | 
						|
	capNames := re.CapNames()
 | 
						|
 | 
						|
	re = re.Simplify()
 | 
						|
	prog, err := syntax.Compile(re)
 | 
						|
	if err != nil {
 | 
						|
		return nil, err
 | 
						|
	}
 | 
						|
	matchcap := prog.NumCap
 | 
						|
	if matchcap < 2 {
 | 
						|
		matchcap = 2
 | 
						|
	}
 | 
						|
	regexp := &Regexp{
 | 
						|
		expr:        expr,
 | 
						|
		prog:        prog,
 | 
						|
		onepass:     compileOnePass(prog),
 | 
						|
		numSubexp:   maxCap,
 | 
						|
		subexpNames: capNames,
 | 
						|
		cond:        prog.StartCond(),
 | 
						|
		longest:     longest,
 | 
						|
		matchcap:    matchcap,
 | 
						|
		minInputLen: minInputLen(re),
 | 
						|
	}
 | 
						|
	if regexp.onepass == nil {
 | 
						|
		regexp.prefix, regexp.prefixComplete = prog.Prefix()
 | 
						|
		regexp.maxBitStateLen = maxBitStateLen(prog)
 | 
						|
	} else {
 | 
						|
		regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog)
 | 
						|
	}
 | 
						|
	if regexp.prefix != "" {
 | 
						|
		// TODO(rsc): Remove this allocation by adding
 | 
						|
		// IndexString to package bytes.
 | 
						|
		regexp.prefixBytes = []byte(regexp.prefix)
 | 
						|
		regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
 | 
						|
	}
 | 
						|
 | 
						|
	n := len(prog.Inst)
 | 
						|
	i := 0
 | 
						|
	for matchSize[i] != 0 && matchSize[i] < n {
 | 
						|
		i++
 | 
						|
	}
 | 
						|
	regexp.mpool = i
 | 
						|
 | 
						|
	return regexp, nil
 | 
						|
}
 | 
						|
 | 
						|
// Pools of *machine for use during (*Regexp).doExecute,
 | 
						|
// split up by the size of the execution queues.
 | 
						|
// matchPool[i] machines have queue size matchSize[i].
 | 
						|
// On a 64-bit system each queue entry is 16 bytes,
 | 
						|
// so matchPool[0] has 16*2*128 = 4kB queues, etc.
 | 
						|
// The final matchPool is a catch-all for very large queues.
 | 
						|
var (
 | 
						|
	matchSize = [...]int{128, 512, 2048, 16384, 0}
 | 
						|
	matchPool [len(matchSize)]sync.Pool
 | 
						|
)
 | 
						|
 | 
						|
// get returns a machine to use for matching re.
 | 
						|
// It uses the re's machine cache if possible, to avoid
 | 
						|
// unnecessary allocation.
 | 
						|
func (re *Regexp) get() *machine {
 | 
						|
	m, ok := matchPool[re.mpool].Get().(*machine)
 | 
						|
	if !ok {
 | 
						|
		m = new(machine)
 | 
						|
	}
 | 
						|
	m.re = re
 | 
						|
	m.p = re.prog
 | 
						|
	if cap(m.matchcap) < re.matchcap {
 | 
						|
		m.matchcap = make([]int, re.matchcap)
 | 
						|
		for _, t := range m.pool {
 | 
						|
			t.cap = make([]int, re.matchcap)
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Allocate queues if needed.
 | 
						|
	// Or reallocate, for "large" match pool.
 | 
						|
	n := matchSize[re.mpool]
 | 
						|
	if n == 0 { // large pool
 | 
						|
		n = len(re.prog.Inst)
 | 
						|
	}
 | 
						|
	if len(m.q0.sparse) < n {
 | 
						|
		m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}
 | 
						|
		m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}
 | 
						|
	}
 | 
						|
	return m
 | 
						|
}
 | 
						|
 | 
						|
// put returns a machine to the correct machine pool.
 | 
						|
func (re *Regexp) put(m *machine) {
 | 
						|
	m.re = nil
 | 
						|
	m.p = nil
 | 
						|
	m.inputs.clear()
 | 
						|
	matchPool[re.mpool].Put(m)
 | 
						|
}
 | 
						|
 | 
						|
// minInputLen walks the regexp to find the minimum length of any matchable input.
 | 
						|
func minInputLen(re *syntax.Regexp) int {
 | 
						|
	switch re.Op {
 | 
						|
	default:
 | 
						|
		return 0
 | 
						|
	case syntax.OpAnyChar, syntax.OpAnyCharNotNL, syntax.OpCharClass:
 | 
						|
		return 1
 | 
						|
	case syntax.OpLiteral:
 | 
						|
		l := 0
 | 
						|
		for _, r := range re.Rune {
 | 
						|
			if r == utf8.RuneError {
 | 
						|
				l++
 | 
						|
			} else {
 | 
						|
				l += utf8.RuneLen(r)
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return l
 | 
						|
	case syntax.OpCapture, syntax.OpPlus:
 | 
						|
		return minInputLen(re.Sub[0])
 | 
						|
	case syntax.OpRepeat:
 | 
						|
		return re.Min * minInputLen(re.Sub[0])
 | 
						|
	case syntax.OpConcat:
 | 
						|
		l := 0
 | 
						|
		for _, sub := range re.Sub {
 | 
						|
			l += minInputLen(sub)
 | 
						|
		}
 | 
						|
		return l
 | 
						|
	case syntax.OpAlternate:
 | 
						|
		l := minInputLen(re.Sub[0])
 | 
						|
		var lnext int
 | 
						|
		for _, sub := range re.Sub[1:] {
 | 
						|
			lnext = minInputLen(sub)
 | 
						|
			if lnext < l {
 | 
						|
				l = lnext
 | 
						|
			}
 | 
						|
		}
 | 
						|
		return l
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// MustCompile is like [Compile] but panics if the expression cannot be parsed.
 | 
						|
// It simplifies safe initialization of global variables holding compiled regular
 | 
						|
// expressions.
 | 
						|
func MustCompile(str string) *Regexp {
 | 
						|
	regexp, err := Compile(str)
 | 
						|
	if err != nil {
 | 
						|
		panic(`regexp: Compile(` + quote(str) + `): ` + err.Error())
 | 
						|
	}
 | 
						|
	return regexp
 | 
						|
}
 | 
						|
 | 
						|
// MustCompilePOSIX is like [CompilePOSIX] but panics if the expression cannot be parsed.
 | 
						|
// It simplifies safe initialization of global variables holding compiled regular
 | 
						|
// expressions.
 | 
						|
func MustCompilePOSIX(str string) *Regexp {
 | 
						|
	regexp, err := CompilePOSIX(str)
 | 
						|
	if err != nil {
 | 
						|
		panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + err.Error())
 | 
						|
	}
 | 
						|
	return regexp
 | 
						|
}
 | 
						|
 | 
						|
func quote(s string) string {
 | 
						|
	if strconv.CanBackquote(s) {
 | 
						|
		return "`" + s + "`"
 | 
						|
	}
 | 
						|
	return strconv.Quote(s)
 | 
						|
}
 | 
						|
 | 
						|
// NumSubexp returns the number of parenthesized subexpressions in this [Regexp].
 | 
						|
func (re *Regexp) NumSubexp() int {
 | 
						|
	return re.numSubexp
 | 
						|
}
 | 
						|
 | 
						|
// SubexpNames returns the names of the parenthesized subexpressions
 | 
						|
// in this [Regexp]. The name for the first sub-expression is names[1],
 | 
						|
// so that if m is a match slice, the name for m[i] is SubexpNames()[i].
 | 
						|
// Since the Regexp as a whole cannot be named, names[0] is always
 | 
						|
// the empty string. The slice should not be modified.
 | 
						|
func (re *Regexp) SubexpNames() []string {
 | 
						|
	return re.subexpNames
 | 
						|
}
 | 
						|
 | 
						|
// SubexpIndex returns the index of the first subexpression with the given name,
 | 
						|
// or -1 if there is no subexpression with that name.
 | 
						|
//
 | 
						|
// Note that multiple subexpressions can be written using the same name, as in
 | 
						|
// (?P<bob>a+)(?P<bob>b+), which declares two subexpressions named "bob".
 | 
						|
// In this case, SubexpIndex returns the index of the leftmost such subexpression
 | 
						|
// in the regular expression.
 | 
						|
func (re *Regexp) SubexpIndex(name string) int {
 | 
						|
	if name != "" {
 | 
						|
		for i, s := range re.subexpNames {
 | 
						|
			if name == s {
 | 
						|
				return i
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return -1
 | 
						|
}
 | 
						|
 | 
						|
const endOfText rune = -1
 | 
						|
 | 
						|
// input abstracts different representations of the input text. It provides
 | 
						|
// one-character lookahead.
 | 
						|
type input interface {
 | 
						|
	step(pos int) (r rune, width int) // advance one rune
 | 
						|
	canCheckPrefix() bool             // can we look ahead without losing info?
 | 
						|
	hasPrefix(re *Regexp) bool
 | 
						|
	index(re *Regexp, pos int) int
 | 
						|
	context(pos int) lazyFlag
 | 
						|
}
 | 
						|
 | 
						|
// inputString scans a string.
 | 
						|
type inputString struct {
 | 
						|
	str string
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputString) step(pos int) (rune, int) {
 | 
						|
	if pos < len(i.str) {
 | 
						|
		c := i.str[pos]
 | 
						|
		if c < utf8.RuneSelf {
 | 
						|
			return rune(c), 1
 | 
						|
		}
 | 
						|
		return utf8.DecodeRuneInString(i.str[pos:])
 | 
						|
	}
 | 
						|
	return endOfText, 0
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputString) canCheckPrefix() bool {
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputString) hasPrefix(re *Regexp) bool {
 | 
						|
	return strings.HasPrefix(i.str, re.prefix)
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputString) index(re *Regexp, pos int) int {
 | 
						|
	return strings.Index(i.str[pos:], re.prefix)
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputString) context(pos int) lazyFlag {
 | 
						|
	r1, r2 := endOfText, endOfText
 | 
						|
	// 0 < pos && pos <= len(i.str)
 | 
						|
	if uint(pos-1) < uint(len(i.str)) {
 | 
						|
		r1 = rune(i.str[pos-1])
 | 
						|
		if r1 >= utf8.RuneSelf {
 | 
						|
			r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
 | 
						|
		}
 | 
						|
	}
 | 
						|
	// 0 <= pos && pos < len(i.str)
 | 
						|
	if uint(pos) < uint(len(i.str)) {
 | 
						|
		r2 = rune(i.str[pos])
 | 
						|
		if r2 >= utf8.RuneSelf {
 | 
						|
			r2, _ = utf8.DecodeRuneInString(i.str[pos:])
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return newLazyFlag(r1, r2)
 | 
						|
}
 | 
						|
 | 
						|
// inputBytes scans a byte slice.
 | 
						|
type inputBytes struct {
 | 
						|
	str []byte
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputBytes) step(pos int) (rune, int) {
 | 
						|
	if pos < len(i.str) {
 | 
						|
		c := i.str[pos]
 | 
						|
		if c < utf8.RuneSelf {
 | 
						|
			return rune(c), 1
 | 
						|
		}
 | 
						|
		return utf8.DecodeRune(i.str[pos:])
 | 
						|
	}
 | 
						|
	return endOfText, 0
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputBytes) canCheckPrefix() bool {
 | 
						|
	return true
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputBytes) hasPrefix(re *Regexp) bool {
 | 
						|
	return bytes.HasPrefix(i.str, re.prefixBytes)
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputBytes) index(re *Regexp, pos int) int {
 | 
						|
	return bytes.Index(i.str[pos:], re.prefixBytes)
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputBytes) context(pos int) lazyFlag {
 | 
						|
	r1, r2 := endOfText, endOfText
 | 
						|
	// 0 < pos && pos <= len(i.str)
 | 
						|
	if uint(pos-1) < uint(len(i.str)) {
 | 
						|
		r1 = rune(i.str[pos-1])
 | 
						|
		if r1 >= utf8.RuneSelf {
 | 
						|
			r1, _ = utf8.DecodeLastRune(i.str[:pos])
 | 
						|
		}
 | 
						|
	}
 | 
						|
	// 0 <= pos && pos < len(i.str)
 | 
						|
	if uint(pos) < uint(len(i.str)) {
 | 
						|
		r2 = rune(i.str[pos])
 | 
						|
		if r2 >= utf8.RuneSelf {
 | 
						|
			r2, _ = utf8.DecodeRune(i.str[pos:])
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return newLazyFlag(r1, r2)
 | 
						|
}
 | 
						|
 | 
						|
// inputReader scans a RuneReader.
 | 
						|
type inputReader struct {
 | 
						|
	r     io.RuneReader
 | 
						|
	atEOT bool
 | 
						|
	pos   int
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputReader) step(pos int) (rune, int) {
 | 
						|
	if !i.atEOT && pos != i.pos {
 | 
						|
		return endOfText, 0
 | 
						|
 | 
						|
	}
 | 
						|
	r, w, err := i.r.ReadRune()
 | 
						|
	if err != nil {
 | 
						|
		i.atEOT = true
 | 
						|
		return endOfText, 0
 | 
						|
	}
 | 
						|
	i.pos += w
 | 
						|
	return r, w
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputReader) canCheckPrefix() bool {
 | 
						|
	return false
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputReader) hasPrefix(re *Regexp) bool {
 | 
						|
	return false
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputReader) index(re *Regexp, pos int) int {
 | 
						|
	return -1
 | 
						|
}
 | 
						|
 | 
						|
func (i *inputReader) context(pos int) lazyFlag {
 | 
						|
	return 0 // not used
 | 
						|
}
 | 
						|
 | 
						|
// LiteralPrefix returns a literal string that must begin any match
 | 
						|
// of the regular expression re. It returns the boolean true if the
 | 
						|
// literal string comprises the entire regular expression.
 | 
						|
func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
 | 
						|
	return re.prefix, re.prefixComplete
 | 
						|
}
 | 
						|
 | 
						|
// MatchReader reports whether the text returned by the [io.RuneReader]
 | 
						|
// contains any match of the regular expression re.
 | 
						|
func (re *Regexp) MatchReader(r io.RuneReader) bool {
 | 
						|
	return re.doMatch(r, nil, "")
 | 
						|
}
 | 
						|
 | 
						|
// MatchString reports whether the string s
 | 
						|
// contains any match of the regular expression re.
 | 
						|
func (re *Regexp) MatchString(s string) bool {
 | 
						|
	return re.doMatch(nil, nil, s)
 | 
						|
}
 | 
						|
 | 
						|
// Match reports whether the byte slice b
 | 
						|
// contains any match of the regular expression re.
 | 
						|
func (re *Regexp) Match(b []byte) bool {
 | 
						|
	return re.doMatch(nil, b, "")
 | 
						|
}
 | 
						|
 | 
						|
// MatchReader reports whether the text returned by the RuneReader
 | 
						|
// contains any match of the regular expression pattern.
 | 
						|
// More complicated queries need to use [Compile] and the full [Regexp] interface.
 | 
						|
func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
 | 
						|
	re, err := Compile(pattern)
 | 
						|
	if err != nil {
 | 
						|
		return false, err
 | 
						|
	}
 | 
						|
	return re.MatchReader(r), nil
 | 
						|
}
 | 
						|
 | 
						|
// MatchString reports whether the string s
 | 
						|
// contains any match of the regular expression pattern.
 | 
						|
// More complicated queries need to use [Compile] and the full [Regexp] interface.
 | 
						|
func MatchString(pattern string, s string) (matched bool, err error) {
 | 
						|
	re, err := Compile(pattern)
 | 
						|
	if err != nil {
 | 
						|
		return false, err
 | 
						|
	}
 | 
						|
	return re.MatchString(s), nil
 | 
						|
}
 | 
						|
 | 
						|
// Match reports whether the byte slice b
 | 
						|
// contains any match of the regular expression pattern.
 | 
						|
// More complicated queries need to use [Compile] and the full [Regexp] interface.
 | 
						|
func Match(pattern string, b []byte) (matched bool, err error) {
 | 
						|
	re, err := Compile(pattern)
 | 
						|
	if err != nil {
 | 
						|
		return false, err
 | 
						|
	}
 | 
						|
	return re.Match(b), nil
 | 
						|
}
 | 
						|
 | 
						|
// ReplaceAllString returns a copy of src, replacing matches of the [Regexp]
 | 
						|
// with the replacement string repl.
 | 
						|
// Inside repl, $ signs are interpreted as in [Regexp.Expand].
 | 
						|
func (re *Regexp) ReplaceAllString(src, repl string) string {
 | 
						|
	n := 2
 | 
						|
	if strings.Contains(repl, "$") {
 | 
						|
		n = 2 * (re.numSubexp + 1)
 | 
						|
	}
 | 
						|
	b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
 | 
						|
		return re.expand(dst, repl, nil, src, match)
 | 
						|
	})
 | 
						|
	return string(b)
 | 
						|
}
 | 
						|
 | 
						|
// ReplaceAllLiteralString returns a copy of src, replacing matches of the [Regexp]
 | 
						|
// with the replacement string repl. The replacement repl is substituted directly,
 | 
						|
// without using [Regexp.Expand].
 | 
						|
func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
 | 
						|
	return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
 | 
						|
		return append(dst, repl...)
 | 
						|
	}))
 | 
						|
}
 | 
						|
 | 
						|
// ReplaceAllStringFunc returns a copy of src in which all matches of the
 | 
						|
// [Regexp] have been replaced by the return value of function repl applied
 | 
						|
// to the matched substring. The replacement returned by repl is substituted
 | 
						|
// directly, without using [Regexp.Expand].
 | 
						|
func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
 | 
						|
	b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
 | 
						|
		return append(dst, repl(src[match[0]:match[1]])...)
 | 
						|
	})
 | 
						|
	return string(b)
 | 
						|
}
 | 
						|
 | 
						|
func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
 | 
						|
	lastMatchEnd := 0 // end position of the most recent match
 | 
						|
	searchPos := 0    // position where we next look for a match
 | 
						|
	var buf []byte
 | 
						|
	var endPos int
 | 
						|
	if bsrc != nil {
 | 
						|
		endPos = len(bsrc)
 | 
						|
	} else {
 | 
						|
		endPos = len(src)
 | 
						|
	}
 | 
						|
	if nmatch > re.prog.NumCap {
 | 
						|
		nmatch = re.prog.NumCap
 | 
						|
	}
 | 
						|
 | 
						|
	var dstCap [2]int
 | 
						|
	for searchPos <= endPos {
 | 
						|
		a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0])
 | 
						|
		if len(a) == 0 {
 | 
						|
			break // no more matches
 | 
						|
		}
 | 
						|
 | 
						|
		// Copy the unmatched characters before this match.
 | 
						|
		if bsrc != nil {
 | 
						|
			buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
 | 
						|
		} else {
 | 
						|
			buf = append(buf, src[lastMatchEnd:a[0]]...)
 | 
						|
		}
 | 
						|
 | 
						|
		// Now insert a copy of the replacement string, but not for a
 | 
						|
		// match of the empty string immediately after another match.
 | 
						|
		// (Otherwise, we get double replacement for patterns that
 | 
						|
		// match both empty and nonempty strings.)
 | 
						|
		if a[1] > lastMatchEnd || a[0] == 0 {
 | 
						|
			buf = repl(buf, a)
 | 
						|
		}
 | 
						|
		lastMatchEnd = a[1]
 | 
						|
 | 
						|
		// Advance past this match; always advance at least one character.
 | 
						|
		var width int
 | 
						|
		if bsrc != nil {
 | 
						|
			_, width = utf8.DecodeRune(bsrc[searchPos:])
 | 
						|
		} else {
 | 
						|
			_, width = utf8.DecodeRuneInString(src[searchPos:])
 | 
						|
		}
 | 
						|
		if searchPos+width > a[1] {
 | 
						|
			searchPos += width
 | 
						|
		} else if searchPos+1 > a[1] {
 | 
						|
			// This clause is only needed at the end of the input
 | 
						|
			// string. In that case, DecodeRuneInString returns width=0.
 | 
						|
			searchPos++
 | 
						|
		} else {
 | 
						|
			searchPos = a[1]
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	// Copy the unmatched characters after the last match.
 | 
						|
	if bsrc != nil {
 | 
						|
		buf = append(buf, bsrc[lastMatchEnd:]...)
 | 
						|
	} else {
 | 
						|
		buf = append(buf, src[lastMatchEnd:]...)
 | 
						|
	}
 | 
						|
 | 
						|
	return buf
 | 
						|
}
 | 
						|
 | 
						|
// ReplaceAll returns a copy of src, replacing matches of the [Regexp]
 | 
						|
// with the replacement text repl.
 | 
						|
// Inside repl, $ signs are interpreted as in [Regexp.Expand].
 | 
						|
func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
 | 
						|
	n := 2
 | 
						|
	if bytes.IndexByte(repl, '$') >= 0 {
 | 
						|
		n = 2 * (re.numSubexp + 1)
 | 
						|
	}
 | 
						|
	srepl := ""
 | 
						|
	b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
 | 
						|
		if len(srepl) != len(repl) {
 | 
						|
			srepl = string(repl)
 | 
						|
		}
 | 
						|
		return re.expand(dst, srepl, src, "", match)
 | 
						|
	})
 | 
						|
	return b
 | 
						|
}
 | 
						|
 | 
						|
// ReplaceAllLiteral returns a copy of src, replacing matches of the [Regexp]
 | 
						|
// with the replacement bytes repl. The replacement repl is substituted directly,
 | 
						|
// without using [Regexp.Expand].
 | 
						|
func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
 | 
						|
	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
 | 
						|
		return append(dst, repl...)
 | 
						|
	})
 | 
						|
}
 | 
						|
 | 
						|
// ReplaceAllFunc returns a copy of src in which all matches of the
 | 
						|
// [Regexp] have been replaced by the return value of function repl applied
 | 
						|
// to the matched byte slice. The replacement returned by repl is substituted
 | 
						|
// directly, without using [Regexp.Expand].
 | 
						|
func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
 | 
						|
	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
 | 
						|
		return append(dst, repl(src[match[0]:match[1]])...)
 | 
						|
	})
 | 
						|
}
 | 
						|
 | 
						|
// Bitmap used by func special to check whether a character needs to be escaped.
 | 
						|
var specialBytes [16]byte
 | 
						|
 | 
						|
// special reports whether byte b needs to be escaped by QuoteMeta.
 | 
						|
func special(b byte) bool {
 | 
						|
	return b < utf8.RuneSelf && specialBytes[b%16]&(1<<(b/16)) != 0
 | 
						|
}
 | 
						|
 | 
						|
func init() {
 | 
						|
	for _, b := range []byte(`\.+*?()|[]{}^$`) {
 | 
						|
		specialBytes[b%16] |= 1 << (b / 16)
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// QuoteMeta returns a string that escapes all regular expression metacharacters
 | 
						|
// inside the argument text; the returned string is a regular expression matching
 | 
						|
// the literal text.
 | 
						|
func QuoteMeta(s string) string {
 | 
						|
	// A byte loop is correct because all metacharacters are ASCII.
 | 
						|
	var i int
 | 
						|
	for i = 0; i < len(s); i++ {
 | 
						|
		if special(s[i]) {
 | 
						|
			break
 | 
						|
		}
 | 
						|
	}
 | 
						|
	// No meta characters found, so return original string.
 | 
						|
	if i >= len(s) {
 | 
						|
		return s
 | 
						|
	}
 | 
						|
 | 
						|
	b := make([]byte, 2*len(s)-i)
 | 
						|
	copy(b, s[:i])
 | 
						|
	j := i
 | 
						|
	for ; i < len(s); i++ {
 | 
						|
		if special(s[i]) {
 | 
						|
			b[j] = '\\'
 | 
						|
			j++
 | 
						|
		}
 | 
						|
		b[j] = s[i]
 | 
						|
		j++
 | 
						|
	}
 | 
						|
	return string(b[:j])
 | 
						|
}
 | 
						|
 | 
						|
// The number of capture values in the program may correspond
 | 
						|
// to fewer capturing expressions than are in the regexp.
 | 
						|
// For example, "(a){0}" turns into an empty program, so the
 | 
						|
// maximum capture in the program is 0 but we need to return
 | 
						|
// an expression for \1.  Pad appends -1s to the slice a as needed.
 | 
						|
func (re *Regexp) pad(a []int) []int {
 | 
						|
	if a == nil {
 | 
						|
		// No match.
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	n := (1 + re.numSubexp) * 2
 | 
						|
	for len(a) < n {
 | 
						|
		a = append(a, -1)
 | 
						|
	}
 | 
						|
	return a
 | 
						|
}
 | 
						|
 | 
						|
// allMatches calls deliver at most n times
 | 
						|
// with the location of successive matches in the input text.
 | 
						|
// The input text is b if non-nil, otherwise s.
 | 
						|
func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
 | 
						|
	var end int
 | 
						|
	if b == nil {
 | 
						|
		end = len(s)
 | 
						|
	} else {
 | 
						|
		end = len(b)
 | 
						|
	}
 | 
						|
 | 
						|
	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
 | 
						|
		matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil)
 | 
						|
		if len(matches) == 0 {
 | 
						|
			break
 | 
						|
		}
 | 
						|
 | 
						|
		accept := true
 | 
						|
		if matches[1] == pos {
 | 
						|
			// We've found an empty match.
 | 
						|
			if matches[0] == prevMatchEnd {
 | 
						|
				// We don't allow an empty match right
 | 
						|
				// after a previous match, so ignore it.
 | 
						|
				accept = false
 | 
						|
			}
 | 
						|
			var width int
 | 
						|
			if b == nil {
 | 
						|
				is := inputString{str: s}
 | 
						|
				_, width = is.step(pos)
 | 
						|
			} else {
 | 
						|
				ib := inputBytes{str: b}
 | 
						|
				_, width = ib.step(pos)
 | 
						|
			}
 | 
						|
			if width > 0 {
 | 
						|
				pos += width
 | 
						|
			} else {
 | 
						|
				pos = end + 1
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			pos = matches[1]
 | 
						|
		}
 | 
						|
		prevMatchEnd = matches[1]
 | 
						|
 | 
						|
		if accept {
 | 
						|
			deliver(re.pad(matches))
 | 
						|
			i++
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
// Find returns a slice holding the text of the leftmost match in b of the regular expression.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) Find(b []byte) []byte {
 | 
						|
	var dstCap [2]int
 | 
						|
	a := re.doExecute(nil, b, "", 0, 2, dstCap[:0])
 | 
						|
	if a == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return b[a[0]:a[1]:a[1]]
 | 
						|
}
 | 
						|
 | 
						|
// FindIndex returns a two-element slice of integers defining the location of
 | 
						|
// the leftmost match in b of the regular expression. The match itself is at
 | 
						|
// b[loc[0]:loc[1]].
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindIndex(b []byte) (loc []int) {
 | 
						|
	a := re.doExecute(nil, b, "", 0, 2, nil)
 | 
						|
	if a == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return a[0:2]
 | 
						|
}
 | 
						|
 | 
						|
// FindString returns a string holding the text of the leftmost match in s of the regular
 | 
						|
// expression. If there is no match, the return value is an empty string,
 | 
						|
// but it will also be empty if the regular expression successfully matches
 | 
						|
// an empty string. Use [Regexp.FindStringIndex] or [Regexp.FindStringSubmatch] if it is
 | 
						|
// necessary to distinguish these cases.
 | 
						|
func (re *Regexp) FindString(s string) string {
 | 
						|
	var dstCap [2]int
 | 
						|
	a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0])
 | 
						|
	if a == nil {
 | 
						|
		return ""
 | 
						|
	}
 | 
						|
	return s[a[0]:a[1]]
 | 
						|
}
 | 
						|
 | 
						|
// FindStringIndex returns a two-element slice of integers defining the
 | 
						|
// location of the leftmost match in s of the regular expression. The match
 | 
						|
// itself is at s[loc[0]:loc[1]].
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindStringIndex(s string) (loc []int) {
 | 
						|
	a := re.doExecute(nil, nil, s, 0, 2, nil)
 | 
						|
	if a == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return a[0:2]
 | 
						|
}
 | 
						|
 | 
						|
// FindReaderIndex returns a two-element slice of integers defining the
 | 
						|
// location of the leftmost match of the regular expression in text read from
 | 
						|
// the [io.RuneReader]. The match text was found in the input stream at
 | 
						|
// byte offset loc[0] through loc[1]-1.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
 | 
						|
	a := re.doExecute(r, nil, "", 0, 2, nil)
 | 
						|
	if a == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	return a[0:2]
 | 
						|
}
 | 
						|
 | 
						|
// FindSubmatch returns a slice of slices holding the text of the leftmost
 | 
						|
// match of the regular expression in b and the matches, if any, of its
 | 
						|
// subexpressions, as defined by the 'Submatch' descriptions in the package
 | 
						|
// comment.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindSubmatch(b []byte) [][]byte {
 | 
						|
	var dstCap [4]int
 | 
						|
	a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0])
 | 
						|
	if a == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	ret := make([][]byte, 1+re.numSubexp)
 | 
						|
	for i := range ret {
 | 
						|
		if 2*i < len(a) && a[2*i] >= 0 {
 | 
						|
			ret[i] = b[a[2*i]:a[2*i+1]:a[2*i+1]]
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return ret
 | 
						|
}
 | 
						|
 | 
						|
// Expand appends template to dst and returns the result; during the
 | 
						|
// append, Expand replaces variables in the template with corresponding
 | 
						|
// matches drawn from src. The match slice should have been returned by
 | 
						|
// [Regexp.FindSubmatchIndex].
 | 
						|
//
 | 
						|
// In the template, a variable is denoted by a substring of the form
 | 
						|
// $name or ${name}, where name is a non-empty sequence of letters,
 | 
						|
// digits, and underscores. A purely numeric name like $1 refers to
 | 
						|
// the submatch with the corresponding index; other names refer to
 | 
						|
// capturing parentheses named with the (?P<name>...) syntax. A
 | 
						|
// reference to an out of range or unmatched index or a name that is not
 | 
						|
// present in the regular expression is replaced with an empty slice.
 | 
						|
//
 | 
						|
// In the $name form, name is taken to be as long as possible: $1x is
 | 
						|
// equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
 | 
						|
//
 | 
						|
// To insert a literal $ in the output, use $$ in the template.
 | 
						|
func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
 | 
						|
	return re.expand(dst, string(template), src, "", match)
 | 
						|
}
 | 
						|
 | 
						|
// ExpandString is like [Regexp.Expand] but the template and source are strings.
 | 
						|
// It appends to and returns a byte slice in order to give the calling
 | 
						|
// code control over allocation.
 | 
						|
func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
 | 
						|
	return re.expand(dst, template, nil, src, match)
 | 
						|
}
 | 
						|
 | 
						|
func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
 | 
						|
	for len(template) > 0 {
 | 
						|
		before, after, ok := strings.Cut(template, "$")
 | 
						|
		if !ok {
 | 
						|
			break
 | 
						|
		}
 | 
						|
		dst = append(dst, before...)
 | 
						|
		template = after
 | 
						|
		if template != "" && template[0] == '$' {
 | 
						|
			// Treat $$ as $.
 | 
						|
			dst = append(dst, '$')
 | 
						|
			template = template[1:]
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		name, num, rest, ok := extract(template)
 | 
						|
		if !ok {
 | 
						|
			// Malformed; treat $ as raw text.
 | 
						|
			dst = append(dst, '$')
 | 
						|
			continue
 | 
						|
		}
 | 
						|
		template = rest
 | 
						|
		if num >= 0 {
 | 
						|
			if 2*num+1 < len(match) && match[2*num] >= 0 {
 | 
						|
				if bsrc != nil {
 | 
						|
					dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
 | 
						|
				} else {
 | 
						|
					dst = append(dst, src[match[2*num]:match[2*num+1]]...)
 | 
						|
				}
 | 
						|
			}
 | 
						|
		} else {
 | 
						|
			for i, namei := range re.subexpNames {
 | 
						|
				if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
 | 
						|
					if bsrc != nil {
 | 
						|
						dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
 | 
						|
					} else {
 | 
						|
						dst = append(dst, src[match[2*i]:match[2*i+1]]...)
 | 
						|
					}
 | 
						|
					break
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	dst = append(dst, template...)
 | 
						|
	return dst
 | 
						|
}
 | 
						|
 | 
						|
// extract returns the name from a leading "name" or "{name}" in str.
 | 
						|
// (The $ has already been removed by the caller.)
 | 
						|
// If it is a number, extract returns num set to that number; otherwise num = -1.
 | 
						|
func extract(str string) (name string, num int, rest string, ok bool) {
 | 
						|
	if str == "" {
 | 
						|
		return
 | 
						|
	}
 | 
						|
	brace := false
 | 
						|
	if str[0] == '{' {
 | 
						|
		brace = true
 | 
						|
		str = str[1:]
 | 
						|
	}
 | 
						|
	i := 0
 | 
						|
	for i < len(str) {
 | 
						|
		rune, size := utf8.DecodeRuneInString(str[i:])
 | 
						|
		if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
 | 
						|
			break
 | 
						|
		}
 | 
						|
		i += size
 | 
						|
	}
 | 
						|
	if i == 0 {
 | 
						|
		// empty name is not okay
 | 
						|
		return
 | 
						|
	}
 | 
						|
	name = str[:i]
 | 
						|
	if brace {
 | 
						|
		if i >= len(str) || str[i] != '}' {
 | 
						|
			// missing closing brace
 | 
						|
			return
 | 
						|
		}
 | 
						|
		i++
 | 
						|
	}
 | 
						|
 | 
						|
	// Parse number.
 | 
						|
	num = 0
 | 
						|
	for i := 0; i < len(name); i++ {
 | 
						|
		if name[i] < '0' || '9' < name[i] || num >= 1e8 {
 | 
						|
			num = -1
 | 
						|
			break
 | 
						|
		}
 | 
						|
		num = num*10 + int(name[i]) - '0'
 | 
						|
	}
 | 
						|
	// Disallow leading zeros.
 | 
						|
	if name[0] == '0' && len(name) > 1 {
 | 
						|
		num = -1
 | 
						|
	}
 | 
						|
 | 
						|
	rest = str[i:]
 | 
						|
	ok = true
 | 
						|
	return
 | 
						|
}
 | 
						|
 | 
						|
// FindSubmatchIndex returns a slice holding the index pairs identifying the
 | 
						|
// leftmost match of the regular expression in b and the matches, if any, of
 | 
						|
// its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
 | 
						|
// in the package comment.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindSubmatchIndex(b []byte) []int {
 | 
						|
	return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap, nil))
 | 
						|
}
 | 
						|
 | 
						|
// FindStringSubmatch returns a slice of strings holding the text of the
 | 
						|
// leftmost match of the regular expression in s and the matches, if any, of
 | 
						|
// its subexpressions, as defined by the 'Submatch' description in the
 | 
						|
// package comment.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindStringSubmatch(s string) []string {
 | 
						|
	var dstCap [4]int
 | 
						|
	a := re.doExecute(nil, nil, s, 0, re.prog.NumCap, dstCap[:0])
 | 
						|
	if a == nil {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
	ret := make([]string, 1+re.numSubexp)
 | 
						|
	for i := range ret {
 | 
						|
		if 2*i < len(a) && a[2*i] >= 0 {
 | 
						|
			ret[i] = s[a[2*i]:a[2*i+1]]
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return ret
 | 
						|
}
 | 
						|
 | 
						|
// FindStringSubmatchIndex returns a slice holding the index pairs
 | 
						|
// identifying the leftmost match of the regular expression in s and the
 | 
						|
// matches, if any, of its subexpressions, as defined by the 'Submatch' and
 | 
						|
// 'Index' descriptions in the package comment.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindStringSubmatchIndex(s string) []int {
 | 
						|
	return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap, nil))
 | 
						|
}
 | 
						|
 | 
						|
// FindReaderSubmatchIndex returns a slice holding the index pairs
 | 
						|
// identifying the leftmost match of the regular expression of text read by
 | 
						|
// the [io.RuneReader], and the matches, if any, of its subexpressions, as defined
 | 
						|
// by the 'Submatch' and 'Index' descriptions in the package comment. A
 | 
						|
// return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
 | 
						|
	return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap, nil))
 | 
						|
}
 | 
						|
 | 
						|
const startSize = 10 // The size at which to start a slice in the 'All' routines.
 | 
						|
 | 
						|
// FindAll is the 'All' version of [Regexp.Find]; it returns a slice of all successive
 | 
						|
// matches of the expression, as defined by the 'All' description in the
 | 
						|
// package comment.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindAll(b []byte, n int) [][]byte {
 | 
						|
	if n < 0 {
 | 
						|
		n = len(b) + 1
 | 
						|
	}
 | 
						|
	var result [][]byte
 | 
						|
	re.allMatches("", b, n, func(match []int) {
 | 
						|
		if result == nil {
 | 
						|
			result = make([][]byte, 0, startSize)
 | 
						|
		}
 | 
						|
		result = append(result, b[match[0]:match[1]:match[1]])
 | 
						|
	})
 | 
						|
	return result
 | 
						|
}
 | 
						|
 | 
						|
// FindAllIndex is the 'All' version of [Regexp.FindIndex]; it returns a slice of all
 | 
						|
// successive matches of the expression, as defined by the 'All' description
 | 
						|
// in the package comment.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
 | 
						|
	if n < 0 {
 | 
						|
		n = len(b) + 1
 | 
						|
	}
 | 
						|
	var result [][]int
 | 
						|
	re.allMatches("", b, n, func(match []int) {
 | 
						|
		if result == nil {
 | 
						|
			result = make([][]int, 0, startSize)
 | 
						|
		}
 | 
						|
		result = append(result, match[0:2])
 | 
						|
	})
 | 
						|
	return result
 | 
						|
}
 | 
						|
 | 
						|
// FindAllString is the 'All' version of [Regexp.FindString]; it returns a slice of all
 | 
						|
// successive matches of the expression, as defined by the 'All' description
 | 
						|
// in the package comment.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindAllString(s string, n int) []string {
 | 
						|
	if n < 0 {
 | 
						|
		n = len(s) + 1
 | 
						|
	}
 | 
						|
	var result []string
 | 
						|
	re.allMatches(s, nil, n, func(match []int) {
 | 
						|
		if result == nil {
 | 
						|
			result = make([]string, 0, startSize)
 | 
						|
		}
 | 
						|
		result = append(result, s[match[0]:match[1]])
 | 
						|
	})
 | 
						|
	return result
 | 
						|
}
 | 
						|
 | 
						|
// FindAllStringIndex is the 'All' version of [Regexp.FindStringIndex]; it returns a
 | 
						|
// slice of all successive matches of the expression, as defined by the 'All'
 | 
						|
// description in the package comment.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
 | 
						|
	if n < 0 {
 | 
						|
		n = len(s) + 1
 | 
						|
	}
 | 
						|
	var result [][]int
 | 
						|
	re.allMatches(s, nil, n, func(match []int) {
 | 
						|
		if result == nil {
 | 
						|
			result = make([][]int, 0, startSize)
 | 
						|
		}
 | 
						|
		result = append(result, match[0:2])
 | 
						|
	})
 | 
						|
	return result
 | 
						|
}
 | 
						|
 | 
						|
// FindAllSubmatch is the 'All' version of [Regexp.FindSubmatch]; it returns a slice
 | 
						|
// of all successive matches of the expression, as defined by the 'All'
 | 
						|
// description in the package comment.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
 | 
						|
	if n < 0 {
 | 
						|
		n = len(b) + 1
 | 
						|
	}
 | 
						|
	var result [][][]byte
 | 
						|
	re.allMatches("", b, n, func(match []int) {
 | 
						|
		if result == nil {
 | 
						|
			result = make([][][]byte, 0, startSize)
 | 
						|
		}
 | 
						|
		slice := make([][]byte, len(match)/2)
 | 
						|
		for j := range slice {
 | 
						|
			if match[2*j] >= 0 {
 | 
						|
				slice[j] = b[match[2*j]:match[2*j+1]:match[2*j+1]]
 | 
						|
			}
 | 
						|
		}
 | 
						|
		result = append(result, slice)
 | 
						|
	})
 | 
						|
	return result
 | 
						|
}
 | 
						|
 | 
						|
// FindAllSubmatchIndex is the 'All' version of [Regexp.FindSubmatchIndex]; it returns
 | 
						|
// a slice of all successive matches of the expression, as defined by the
 | 
						|
// 'All' description in the package comment.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
 | 
						|
	if n < 0 {
 | 
						|
		n = len(b) + 1
 | 
						|
	}
 | 
						|
	var result [][]int
 | 
						|
	re.allMatches("", b, n, func(match []int) {
 | 
						|
		if result == nil {
 | 
						|
			result = make([][]int, 0, startSize)
 | 
						|
		}
 | 
						|
		result = append(result, match)
 | 
						|
	})
 | 
						|
	return result
 | 
						|
}
 | 
						|
 | 
						|
// FindAllStringSubmatch is the 'All' version of [Regexp.FindStringSubmatch]; it
 | 
						|
// returns a slice of all successive matches of the expression, as defined by
 | 
						|
// the 'All' description in the package comment.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
 | 
						|
	if n < 0 {
 | 
						|
		n = len(s) + 1
 | 
						|
	}
 | 
						|
	var result [][]string
 | 
						|
	re.allMatches(s, nil, n, func(match []int) {
 | 
						|
		if result == nil {
 | 
						|
			result = make([][]string, 0, startSize)
 | 
						|
		}
 | 
						|
		slice := make([]string, len(match)/2)
 | 
						|
		for j := range slice {
 | 
						|
			if match[2*j] >= 0 {
 | 
						|
				slice[j] = s[match[2*j]:match[2*j+1]]
 | 
						|
			}
 | 
						|
		}
 | 
						|
		result = append(result, slice)
 | 
						|
	})
 | 
						|
	return result
 | 
						|
}
 | 
						|
 | 
						|
// FindAllStringSubmatchIndex is the 'All' version of
 | 
						|
// [Regexp.FindStringSubmatchIndex]; it returns a slice of all successive matches of
 | 
						|
// the expression, as defined by the 'All' description in the package
 | 
						|
// comment.
 | 
						|
// A return value of nil indicates no match.
 | 
						|
func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
 | 
						|
	if n < 0 {
 | 
						|
		n = len(s) + 1
 | 
						|
	}
 | 
						|
	var result [][]int
 | 
						|
	re.allMatches(s, nil, n, func(match []int) {
 | 
						|
		if result == nil {
 | 
						|
			result = make([][]int, 0, startSize)
 | 
						|
		}
 | 
						|
		result = append(result, match)
 | 
						|
	})
 | 
						|
	return result
 | 
						|
}
 | 
						|
 | 
						|
// Split slices s into substrings separated by the expression and returns a slice of
 | 
						|
// the substrings between those expression matches.
 | 
						|
//
 | 
						|
// The slice returned by this method consists of all the substrings of s
 | 
						|
// not contained in the slice returned by [Regexp.FindAllString]. When called on an expression
 | 
						|
// that contains no metacharacters, it is equivalent to [strings.SplitN].
 | 
						|
//
 | 
						|
// Example:
 | 
						|
//
 | 
						|
//	s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5)
 | 
						|
//	// s: ["", "b", "b", "c", "cadaaae"]
 | 
						|
//
 | 
						|
// The count determines the number of substrings to return:
 | 
						|
//
 | 
						|
//	n > 0: at most n substrings; the last substring will be the unsplit remainder.
 | 
						|
//	n == 0: the result is nil (zero substrings)
 | 
						|
//	n < 0: all substrings
 | 
						|
func (re *Regexp) Split(s string, n int) []string {
 | 
						|
 | 
						|
	if n == 0 {
 | 
						|
		return nil
 | 
						|
	}
 | 
						|
 | 
						|
	if len(re.expr) > 0 && len(s) == 0 {
 | 
						|
		return []string{""}
 | 
						|
	}
 | 
						|
 | 
						|
	matches := re.FindAllStringIndex(s, n)
 | 
						|
	strings := make([]string, 0, len(matches))
 | 
						|
 | 
						|
	beg := 0
 | 
						|
	end := 0
 | 
						|
	for _, match := range matches {
 | 
						|
		if n > 0 && len(strings) >= n-1 {
 | 
						|
			break
 | 
						|
		}
 | 
						|
 | 
						|
		end = match[0]
 | 
						|
		if match[1] != 0 {
 | 
						|
			strings = append(strings, s[beg:end])
 | 
						|
		}
 | 
						|
		beg = match[1]
 | 
						|
	}
 | 
						|
 | 
						|
	if end != len(s) {
 | 
						|
		strings = append(strings, s[beg:])
 | 
						|
	}
 | 
						|
 | 
						|
	return strings
 | 
						|
}
 | 
						|
 | 
						|
// MarshalText implements [encoding.TextMarshaler]. The output
 | 
						|
// matches that of calling the [Regexp.String] method.
 | 
						|
//
 | 
						|
// Note that the output is lossy in some cases: This method does not indicate
 | 
						|
// POSIX regular expressions (i.e. those compiled by calling [CompilePOSIX]), or
 | 
						|
// those for which the [Regexp.Longest] method has been called.
 | 
						|
func (re *Regexp) MarshalText() ([]byte, error) {
 | 
						|
	return []byte(re.String()), nil
 | 
						|
}
 | 
						|
 | 
						|
// UnmarshalText implements [encoding.TextUnmarshaler] by calling
 | 
						|
// [Compile] on the encoded value.
 | 
						|
func (re *Regexp) UnmarshalText(text []byte) error {
 | 
						|
	newRE, err := Compile(string(text))
 | 
						|
	if err != nil {
 | 
						|
		return err
 | 
						|
	}
 | 
						|
	*re = *newRE
 | 
						|
	return nil
 | 
						|
}
 |