mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-30 23:52:26 -05:00 
			
		
		
		
	- github.com/KimMachineGun/automemlimit v0.7.4 - github.com/miekg/dns v1.1.67 - github.com/minio/minio-go/v7 v7.0.95 - github.com/spf13/pflag v1.0.7 - github.com/tdewolff/minify/v2 v2.23.9 - github.com/uptrace/bun v1.2.15 - github.com/uptrace/bun/dialect/pgdialect v1.2.15 - github.com/uptrace/bun/dialect/sqlitedialect v1.2.15 - github.com/uptrace/bun/extra/bunotel v1.2.15 - golang.org/x/image v0.29.0 - golang.org/x/net v0.42.0 Reviewed-on: https://codeberg.org/superseriousbusiness/gotosocial/pulls/4339 Co-authored-by: kim <grufwub@gmail.com> Co-committed-by: kim <grufwub@gmail.com>
		
			
				
	
	
		
			554 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			554 lines
		
	
	
	
		
			12 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2011 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| package regexp
 | |
| 
 | |
| import (
 | |
| 	"io"
 | |
| 	"regexp/syntax"
 | |
| 	"sync"
 | |
| )
 | |
| 
 | |
| // A queue is a 'sparse array' holding pending threads of execution.
 | |
| // See https://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html
 | |
| type queue struct {
 | |
| 	sparse []uint32
 | |
| 	dense  []entry
 | |
| }
 | |
| 
 | |
| // An entry is an entry on a queue.
 | |
| // It holds both the instruction pc and the actual thread.
 | |
| // Some queue entries are just place holders so that the machine
 | |
| // knows it has considered that pc. Such entries have t == nil.
 | |
| type entry struct {
 | |
| 	pc uint32
 | |
| 	t  *thread
 | |
| }
 | |
| 
 | |
| // A thread is the state of a single path through the machine:
 | |
| // an instruction and a corresponding capture array.
 | |
| // See https://swtch.com/~rsc/regexp/regexp2.html
 | |
| type thread struct {
 | |
| 	inst *syntax.Inst
 | |
| 	cap  []int
 | |
| }
 | |
| 
 | |
| // A machine holds all the state during an NFA simulation for p.
 | |
| type machine struct {
 | |
| 	re       *Regexp      // corresponding Regexp
 | |
| 	p        *syntax.Prog // compiled program
 | |
| 	q0, q1   queue        // two queues for runq, nextq
 | |
| 	pool     []*thread    // pool of available threads
 | |
| 	matched  bool         // whether a match was found
 | |
| 	matchcap []int        // capture information for the match
 | |
| 
 | |
| 	inputs inputs
 | |
| }
 | |
| 
 | |
| type inputs struct {
 | |
| 	// cached inputs, to avoid allocation
 | |
| 	bytes  inputBytes
 | |
| 	string inputString
 | |
| 	reader inputReader
 | |
| }
 | |
| 
 | |
| func (i *inputs) newBytes(b []byte) input {
 | |
| 	i.bytes.str = b
 | |
| 	return &i.bytes
 | |
| }
 | |
| 
 | |
| func (i *inputs) newString(s string) input {
 | |
| 	i.string.str = s
 | |
| 	return &i.string
 | |
| }
 | |
| 
 | |
| func (i *inputs) newReader(r io.RuneReader) input {
 | |
| 	i.reader.r = r
 | |
| 	i.reader.atEOT = false
 | |
| 	i.reader.pos = 0
 | |
| 	return &i.reader
 | |
| }
 | |
| 
 | |
| func (i *inputs) clear() {
 | |
| 	// We need to clear 1 of these.
 | |
| 	// Avoid the expense of clearing the others (pointer write barrier).
 | |
| 	if i.bytes.str != nil {
 | |
| 		i.bytes.str = nil
 | |
| 	} else if i.reader.r != nil {
 | |
| 		i.reader.r = nil
 | |
| 	} else {
 | |
| 		i.string.str = ""
 | |
| 	}
 | |
| }
 | |
| 
 | |
| func (i *inputs) init(r io.RuneReader, b []byte, s string) (input, int) {
 | |
| 	if r != nil {
 | |
| 		return i.newReader(r), 0
 | |
| 	}
 | |
| 	if b != nil {
 | |
| 		return i.newBytes(b), len(b)
 | |
| 	}
 | |
| 	return i.newString(s), len(s)
 | |
| }
 | |
| 
 | |
| func (m *machine) init(ncap int) {
 | |
| 	for _, t := range m.pool {
 | |
| 		t.cap = t.cap[:ncap]
 | |
| 	}
 | |
| 	m.matchcap = m.matchcap[:ncap]
 | |
| }
 | |
| 
 | |
| // alloc allocates a new thread with the given instruction.
 | |
| // It uses the free pool if possible.
 | |
| func (m *machine) alloc(i *syntax.Inst) *thread {
 | |
| 	var t *thread
 | |
| 	if n := len(m.pool); n > 0 {
 | |
| 		t = m.pool[n-1]
 | |
| 		m.pool = m.pool[:n-1]
 | |
| 	} else {
 | |
| 		t = new(thread)
 | |
| 		t.cap = make([]int, len(m.matchcap), cap(m.matchcap))
 | |
| 	}
 | |
| 	t.inst = i
 | |
| 	return t
 | |
| }
 | |
| 
 | |
| // A lazyFlag is a lazily-evaluated syntax.EmptyOp,
 | |
| // for checking zero-width flags like ^ $ \A \z \B \b.
 | |
| // It records the pair of relevant runes and does not
 | |
| // determine the implied flags until absolutely necessary
 | |
| // (most of the time, that means never).
 | |
| type lazyFlag uint64
 | |
| 
 | |
| func newLazyFlag(r1, r2 rune) lazyFlag {
 | |
| 	return lazyFlag(uint64(r1)<<32 | uint64(uint32(r2)))
 | |
| }
 | |
| 
 | |
| func (f lazyFlag) match(op syntax.EmptyOp) bool {
 | |
| 	if op == 0 {
 | |
| 		return true
 | |
| 	}
 | |
| 	r1 := rune(f >> 32)
 | |
| 	if op&syntax.EmptyBeginLine != 0 {
 | |
| 		if r1 != '\n' && r1 >= 0 {
 | |
| 			return false
 | |
| 		}
 | |
| 		op &^= syntax.EmptyBeginLine
 | |
| 	}
 | |
| 	if op&syntax.EmptyBeginText != 0 {
 | |
| 		if r1 >= 0 {
 | |
| 			return false
 | |
| 		}
 | |
| 		op &^= syntax.EmptyBeginText
 | |
| 	}
 | |
| 	if op == 0 {
 | |
| 		return true
 | |
| 	}
 | |
| 	r2 := rune(f)
 | |
| 	if op&syntax.EmptyEndLine != 0 {
 | |
| 		if r2 != '\n' && r2 >= 0 {
 | |
| 			return false
 | |
| 		}
 | |
| 		op &^= syntax.EmptyEndLine
 | |
| 	}
 | |
| 	if op&syntax.EmptyEndText != 0 {
 | |
| 		if r2 >= 0 {
 | |
| 			return false
 | |
| 		}
 | |
| 		op &^= syntax.EmptyEndText
 | |
| 	}
 | |
| 	if op == 0 {
 | |
| 		return true
 | |
| 	}
 | |
| 	if syntax.IsWordChar(r1) != syntax.IsWordChar(r2) {
 | |
| 		op &^= syntax.EmptyWordBoundary
 | |
| 	} else {
 | |
| 		op &^= syntax.EmptyNoWordBoundary
 | |
| 	}
 | |
| 	return op == 0
 | |
| }
 | |
| 
 | |
| // match runs the machine over the input starting at pos.
 | |
| // It reports whether a match was found.
 | |
| // If so, m.matchcap holds the submatch information.
 | |
| func (m *machine) match(i input, pos int) bool {
 | |
| 	startCond := m.re.cond
 | |
| 	if startCond == ^syntax.EmptyOp(0) { // impossible
 | |
| 		return false
 | |
| 	}
 | |
| 	m.matched = false
 | |
| 	for i := range m.matchcap {
 | |
| 		m.matchcap[i] = -1
 | |
| 	}
 | |
| 	runq, nextq := &m.q0, &m.q1
 | |
| 	r, r1 := endOfText, endOfText
 | |
| 	width, width1 := 0, 0
 | |
| 	r, width = i.step(pos)
 | |
| 	if r != endOfText {
 | |
| 		r1, width1 = i.step(pos + width)
 | |
| 	}
 | |
| 	var flag lazyFlag
 | |
| 	if pos == 0 {
 | |
| 		flag = newLazyFlag(-1, r)
 | |
| 	} else {
 | |
| 		flag = i.context(pos)
 | |
| 	}
 | |
| 	for {
 | |
| 		if len(runq.dense) == 0 {
 | |
| 			if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
 | |
| 				// Anchored match, past beginning of text.
 | |
| 				break
 | |
| 			}
 | |
| 			if m.matched {
 | |
| 				// Have match; finished exploring alternatives.
 | |
| 				break
 | |
| 			}
 | |
| 			if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() {
 | |
| 				// Match requires literal prefix; fast search for it.
 | |
| 				advance := i.index(m.re, pos)
 | |
| 				if advance < 0 {
 | |
| 					break
 | |
| 				}
 | |
| 				pos += advance
 | |
| 				r, width = i.step(pos)
 | |
| 				r1, width1 = i.step(pos + width)
 | |
| 			}
 | |
| 		}
 | |
| 		if !m.matched {
 | |
| 			if len(m.matchcap) > 0 {
 | |
| 				m.matchcap[0] = pos
 | |
| 			}
 | |
| 			m.add(runq, uint32(m.p.Start), pos, m.matchcap, &flag, nil)
 | |
| 		}
 | |
| 		flag = newLazyFlag(r, r1)
 | |
| 		m.step(runq, nextq, pos, pos+width, r, &flag)
 | |
| 		if width == 0 {
 | |
| 			break
 | |
| 		}
 | |
| 		if len(m.matchcap) == 0 && m.matched {
 | |
| 			// Found a match and not paying attention
 | |
| 			// to where it is, so any match will do.
 | |
| 			break
 | |
| 		}
 | |
| 		pos += width
 | |
| 		r, width = r1, width1
 | |
| 		if r != endOfText {
 | |
| 			r1, width1 = i.step(pos + width)
 | |
| 		}
 | |
| 		runq, nextq = nextq, runq
 | |
| 	}
 | |
| 	m.clear(nextq)
 | |
| 	return m.matched
 | |
| }
 | |
| 
 | |
| // clear frees all threads on the thread queue.
 | |
| func (m *machine) clear(q *queue) {
 | |
| 	for _, d := range q.dense {
 | |
| 		if d.t != nil {
 | |
| 			m.pool = append(m.pool, d.t)
 | |
| 		}
 | |
| 	}
 | |
| 	q.dense = q.dense[:0]
 | |
| }
 | |
| 
 | |
| // step executes one step of the machine, running each of the threads
 | |
| // on runq and appending new threads to nextq.
 | |
| // The step processes the rune c (which may be endOfText),
 | |
| // which starts at position pos and ends at nextPos.
 | |
| // nextCond gives the setting for the empty-width flags after c.
 | |
| func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond *lazyFlag) {
 | |
| 	longest := m.re.longest
 | |
| 	for j := 0; j < len(runq.dense); j++ {
 | |
| 		d := &runq.dense[j]
 | |
| 		t := d.t
 | |
| 		if t == nil {
 | |
| 			continue
 | |
| 		}
 | |
| 		if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] {
 | |
| 			m.pool = append(m.pool, t)
 | |
| 			continue
 | |
| 		}
 | |
| 		i := t.inst
 | |
| 		add := false
 | |
| 		switch i.Op {
 | |
| 		default:
 | |
| 			panic("bad inst")
 | |
| 
 | |
| 		case syntax.InstMatch:
 | |
| 			if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) {
 | |
| 				t.cap[1] = pos
 | |
| 				copy(m.matchcap, t.cap)
 | |
| 			}
 | |
| 			if !longest {
 | |
| 				// First-match mode: cut off all lower-priority threads.
 | |
| 				for _, d := range runq.dense[j+1:] {
 | |
| 					if d.t != nil {
 | |
| 						m.pool = append(m.pool, d.t)
 | |
| 					}
 | |
| 				}
 | |
| 				runq.dense = runq.dense[:0]
 | |
| 			}
 | |
| 			m.matched = true
 | |
| 
 | |
| 		case syntax.InstRune:
 | |
| 			add = i.MatchRune(c)
 | |
| 		case syntax.InstRune1:
 | |
| 			add = c == i.Rune[0]
 | |
| 		case syntax.InstRuneAny:
 | |
| 			add = true
 | |
| 		case syntax.InstRuneAnyNotNL:
 | |
| 			add = c != '\n'
 | |
| 		}
 | |
| 		if add {
 | |
| 			t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t)
 | |
| 		}
 | |
| 		if t != nil {
 | |
| 			m.pool = append(m.pool, t)
 | |
| 		}
 | |
| 	}
 | |
| 	runq.dense = runq.dense[:0]
 | |
| }
 | |
| 
 | |
| // add adds an entry to q for pc, unless the q already has such an entry.
 | |
| // It also recursively adds an entry for all instructions reachable from pc by following
 | |
| // empty-width conditions satisfied by cond.  pos gives the current position
 | |
| // in the input.
 | |
| func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond *lazyFlag, t *thread) *thread {
 | |
| Again:
 | |
| 	if pc == 0 {
 | |
| 		return t
 | |
| 	}
 | |
| 	if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc {
 | |
| 		return t
 | |
| 	}
 | |
| 
 | |
| 	j := len(q.dense)
 | |
| 	q.dense = q.dense[:j+1]
 | |
| 	d := &q.dense[j]
 | |
| 	d.t = nil
 | |
| 	d.pc = pc
 | |
| 	q.sparse[pc] = uint32(j)
 | |
| 
 | |
| 	i := &m.p.Inst[pc]
 | |
| 	switch i.Op {
 | |
| 	default:
 | |
| 		panic("unhandled")
 | |
| 	case syntax.InstFail:
 | |
| 		// nothing
 | |
| 	case syntax.InstAlt, syntax.InstAltMatch:
 | |
| 		t = m.add(q, i.Out, pos, cap, cond, t)
 | |
| 		pc = i.Arg
 | |
| 		goto Again
 | |
| 	case syntax.InstEmptyWidth:
 | |
| 		if cond.match(syntax.EmptyOp(i.Arg)) {
 | |
| 			pc = i.Out
 | |
| 			goto Again
 | |
| 		}
 | |
| 	case syntax.InstNop:
 | |
| 		pc = i.Out
 | |
| 		goto Again
 | |
| 	case syntax.InstCapture:
 | |
| 		if int(i.Arg) < len(cap) {
 | |
| 			opos := cap[i.Arg]
 | |
| 			cap[i.Arg] = pos
 | |
| 			m.add(q, i.Out, pos, cap, cond, nil)
 | |
| 			cap[i.Arg] = opos
 | |
| 		} else {
 | |
| 			pc = i.Out
 | |
| 			goto Again
 | |
| 		}
 | |
| 	case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
 | |
| 		if t == nil {
 | |
| 			t = m.alloc(i)
 | |
| 		} else {
 | |
| 			t.inst = i
 | |
| 		}
 | |
| 		if len(cap) > 0 && &t.cap[0] != &cap[0] {
 | |
| 			copy(t.cap, cap)
 | |
| 		}
 | |
| 		d.t = t
 | |
| 		t = nil
 | |
| 	}
 | |
| 	return t
 | |
| }
 | |
| 
 | |
| type onePassMachine struct {
 | |
| 	inputs   inputs
 | |
| 	matchcap []int
 | |
| }
 | |
| 
 | |
| var onePassPool sync.Pool
 | |
| 
 | |
| func newOnePassMachine() *onePassMachine {
 | |
| 	m, ok := onePassPool.Get().(*onePassMachine)
 | |
| 	if !ok {
 | |
| 		m = new(onePassMachine)
 | |
| 	}
 | |
| 	return m
 | |
| }
 | |
| 
 | |
| func freeOnePassMachine(m *onePassMachine) {
 | |
| 	m.inputs.clear()
 | |
| 	onePassPool.Put(m)
 | |
| }
 | |
| 
 | |
| // doOnePass implements r.doExecute using the one-pass execution engine.
 | |
| func (re *Regexp) doOnePass(ir io.RuneReader, ib []byte, is string, pos, ncap int, dstCap []int) []int {
 | |
| 	startCond := re.cond
 | |
| 	if startCond == ^syntax.EmptyOp(0) { // impossible
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	m := newOnePassMachine()
 | |
| 	if cap(m.matchcap) < ncap {
 | |
| 		m.matchcap = make([]int, ncap)
 | |
| 	} else {
 | |
| 		m.matchcap = m.matchcap[:ncap]
 | |
| 	}
 | |
| 
 | |
| 	matched := false
 | |
| 	for i := range m.matchcap {
 | |
| 		m.matchcap[i] = -1
 | |
| 	}
 | |
| 
 | |
| 	i, _ := m.inputs.init(ir, ib, is)
 | |
| 
 | |
| 	r, r1 := endOfText, endOfText
 | |
| 	width, width1 := 0, 0
 | |
| 	r, width = i.step(pos)
 | |
| 	if r != endOfText {
 | |
| 		r1, width1 = i.step(pos + width)
 | |
| 	}
 | |
| 	var flag lazyFlag
 | |
| 	if pos == 0 {
 | |
| 		flag = newLazyFlag(-1, r)
 | |
| 	} else {
 | |
| 		flag = i.context(pos)
 | |
| 	}
 | |
| 	pc := re.onepass.Start
 | |
| 	inst := &re.onepass.Inst[pc]
 | |
| 	// If there is a simple literal prefix, skip over it.
 | |
| 	if pos == 0 && flag.match(syntax.EmptyOp(inst.Arg)) &&
 | |
| 		len(re.prefix) > 0 && i.canCheckPrefix() {
 | |
| 		// Match requires literal prefix; fast search for it.
 | |
| 		if !i.hasPrefix(re) {
 | |
| 			goto Return
 | |
| 		}
 | |
| 		pos += len(re.prefix)
 | |
| 		r, width = i.step(pos)
 | |
| 		r1, width1 = i.step(pos + width)
 | |
| 		flag = i.context(pos)
 | |
| 		pc = int(re.prefixEnd)
 | |
| 	}
 | |
| 	for {
 | |
| 		inst = &re.onepass.Inst[pc]
 | |
| 		pc = int(inst.Out)
 | |
| 		switch inst.Op {
 | |
| 		default:
 | |
| 			panic("bad inst")
 | |
| 		case syntax.InstMatch:
 | |
| 			matched = true
 | |
| 			if len(m.matchcap) > 0 {
 | |
| 				m.matchcap[0] = 0
 | |
| 				m.matchcap[1] = pos
 | |
| 			}
 | |
| 			goto Return
 | |
| 		case syntax.InstRune:
 | |
| 			if !inst.MatchRune(r) {
 | |
| 				goto Return
 | |
| 			}
 | |
| 		case syntax.InstRune1:
 | |
| 			if r != inst.Rune[0] {
 | |
| 				goto Return
 | |
| 			}
 | |
| 		case syntax.InstRuneAny:
 | |
| 			// Nothing
 | |
| 		case syntax.InstRuneAnyNotNL:
 | |
| 			if r == '\n' {
 | |
| 				goto Return
 | |
| 			}
 | |
| 		// peek at the input rune to see which branch of the Alt to take
 | |
| 		case syntax.InstAlt, syntax.InstAltMatch:
 | |
| 			pc = int(onePassNext(inst, r))
 | |
| 			continue
 | |
| 		case syntax.InstFail:
 | |
| 			goto Return
 | |
| 		case syntax.InstNop:
 | |
| 			continue
 | |
| 		case syntax.InstEmptyWidth:
 | |
| 			if !flag.match(syntax.EmptyOp(inst.Arg)) {
 | |
| 				goto Return
 | |
| 			}
 | |
| 			continue
 | |
| 		case syntax.InstCapture:
 | |
| 			if int(inst.Arg) < len(m.matchcap) {
 | |
| 				m.matchcap[inst.Arg] = pos
 | |
| 			}
 | |
| 			continue
 | |
| 		}
 | |
| 		if width == 0 {
 | |
| 			break
 | |
| 		}
 | |
| 		flag = newLazyFlag(r, r1)
 | |
| 		pos += width
 | |
| 		r, width = r1, width1
 | |
| 		if r != endOfText {
 | |
| 			r1, width1 = i.step(pos + width)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| Return:
 | |
| 	if !matched {
 | |
| 		freeOnePassMachine(m)
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	dstCap = append(dstCap, m.matchcap...)
 | |
| 	freeOnePassMachine(m)
 | |
| 	return dstCap
 | |
| }
 | |
| 
 | |
| // doMatch reports whether either r, b or s match the regexp.
 | |
| func (re *Regexp) doMatch(r io.RuneReader, b []byte, s string) bool {
 | |
| 	return re.doExecute(r, b, s, 0, 0, nil) != nil
 | |
| }
 | |
| 
 | |
| // doExecute finds the leftmost match in the input, appends the position
 | |
| // of its subexpressions to dstCap and returns dstCap.
 | |
| //
 | |
| // nil is returned if no matches are found and non-nil if matches are found.
 | |
| func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int, dstCap []int) []int {
 | |
| 	if dstCap == nil {
 | |
| 		// Make sure 'return dstCap' is non-nil.
 | |
| 		dstCap = arrayNoInts[:0:0]
 | |
| 	}
 | |
| 
 | |
| 	if r == nil && len(b)+len(s) < re.minInputLen {
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	if re.onepass != nil {
 | |
| 		return re.doOnePass(r, b, s, pos, ncap, dstCap)
 | |
| 	}
 | |
| 	if r == nil && len(b)+len(s) < re.maxBitStateLen {
 | |
| 		return re.backtrack(b, s, pos, ncap, dstCap)
 | |
| 	}
 | |
| 
 | |
| 	m := re.get()
 | |
| 	i, _ := m.inputs.init(r, b, s)
 | |
| 
 | |
| 	m.init(ncap)
 | |
| 	if !m.match(i, pos) {
 | |
| 		re.put(m)
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	dstCap = append(dstCap, m.matchcap...)
 | |
| 	re.put(m)
 | |
| 	return dstCap
 | |
| }
 | |
| 
 | |
| // arrayNoInts is returned by doExecute match if nil dstCap is passed
 | |
| // to it with ncap=0.
 | |
| var arrayNoInts [0]int
 |