mirror of
				https://github.com/superseriousbusiness/gotosocial.git
				synced 2025-10-31 01:52:26 -05:00 
			
		
		
		
	- github.com/KimMachineGun/automemlimit v0.7.4 - github.com/miekg/dns v1.1.67 - github.com/minio/minio-go/v7 v7.0.95 - github.com/spf13/pflag v1.0.7 - github.com/tdewolff/minify/v2 v2.23.9 - github.com/uptrace/bun v1.2.15 - github.com/uptrace/bun/dialect/pgdialect v1.2.15 - github.com/uptrace/bun/dialect/sqlitedialect v1.2.15 - github.com/uptrace/bun/extra/bunotel v1.2.15 - golang.org/x/image v0.29.0 - golang.org/x/net v0.42.0 Reviewed-on: https://codeberg.org/superseriousbusiness/gotosocial/pulls/4339 Co-authored-by: kim <grufwub@gmail.com> Co-committed-by: kim <grufwub@gmail.com>
		
			
				
	
	
		
			1304 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			1304 lines
		
	
	
	
		
			38 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright 2009 The Go Authors. All rights reserved.
 | |
| // Use of this source code is governed by a BSD-style
 | |
| // license that can be found in the LICENSE file.
 | |
| 
 | |
| // Package regexp implements regular expression search.
 | |
| //
 | |
| // The syntax of the regular expressions accepted is the same
 | |
| // general syntax used by Perl, Python, and other languages.
 | |
| // More precisely, it is the syntax accepted by RE2 and described at
 | |
| // https://golang.org/s/re2syntax, except for \C.
 | |
| // For an overview of the syntax, see the [regexp/syntax] package.
 | |
| //
 | |
| // The regexp implementation provided by this package is
 | |
| // guaranteed to run in time linear in the size of the input.
 | |
| // (This is a property not guaranteed by most open source
 | |
| // implementations of regular expressions.) For more information
 | |
| // about this property, see
 | |
| //
 | |
| //	https://swtch.com/~rsc/regexp/regexp1.html
 | |
| //
 | |
| // or any book about automata theory.
 | |
| //
 | |
| // All characters are UTF-8-encoded code points.
 | |
| // Following [utf8.DecodeRune], each byte of an invalid UTF-8 sequence
 | |
| // is treated as if it encoded utf8.RuneError (U+FFFD).
 | |
| //
 | |
| // There are 16 methods of [Regexp] that match a regular expression and identify
 | |
| // the matched text. Their names are matched by this regular expression:
 | |
| //
 | |
| //	Find(All)?(String)?(Submatch)?(Index)?
 | |
| //
 | |
| // If 'All' is present, the routine matches successive non-overlapping
 | |
| // matches of the entire expression. Empty matches abutting a preceding
 | |
| // match are ignored. The return value is a slice containing the successive
 | |
| // return values of the corresponding non-'All' routine. These routines take
 | |
| // an extra integer argument, n. If n >= 0, the function returns at most n
 | |
| // matches/submatches; otherwise, it returns all of them.
 | |
| //
 | |
| // If 'String' is present, the argument is a string; otherwise it is a slice
 | |
| // of bytes; return values are adjusted as appropriate.
 | |
| //
 | |
| // If 'Submatch' is present, the return value is a slice identifying the
 | |
| // successive submatches of the expression. Submatches are matches of
 | |
| // parenthesized subexpressions (also known as capturing groups) within the
 | |
| // regular expression, numbered from left to right in order of opening
 | |
| // parenthesis. Submatch 0 is the match of the entire expression, submatch 1 is
 | |
| // the match of the first parenthesized subexpression, and so on.
 | |
| //
 | |
| // If 'Index' is present, matches and submatches are identified by byte index
 | |
| // pairs within the input string: result[2*n:2*n+2] identifies the indexes of
 | |
| // the nth submatch. The pair for n==0 identifies the match of the entire
 | |
| // expression. If 'Index' is not present, the match is identified by the text
 | |
| // of the match/submatch. If an index is negative or text is nil, it means that
 | |
| // subexpression did not match any string in the input. For 'String' versions
 | |
| // an empty string means either no match or an empty match.
 | |
| //
 | |
| // There is also a subset of the methods that can be applied to text read
 | |
| // from a RuneReader:
 | |
| //
 | |
| //	MatchReader, FindReaderIndex, FindReaderSubmatchIndex
 | |
| //
 | |
| // This set may grow. Note that regular expression matches may need to
 | |
| // examine text beyond the text returned by a match, so the methods that
 | |
| // match text from a RuneReader may read arbitrarily far into the input
 | |
| // before returning.
 | |
| //
 | |
| // (There are a few other methods that do not match this pattern.)
 | |
| package regexp
 | |
| 
 | |
| import (
 | |
| 	"bytes"
 | |
| 	"io"
 | |
| 	"regexp/syntax"
 | |
| 	"strconv"
 | |
| 	"strings"
 | |
| 	"sync"
 | |
| 	"unicode"
 | |
| 	"unicode/utf8"
 | |
| )
 | |
| 
 | |
| // Regexp is the representation of a compiled regular expression.
 | |
| // A Regexp is safe for concurrent use by multiple goroutines,
 | |
| // except for configuration methods, such as [Regexp.Longest].
 | |
| type Regexp struct {
 | |
| 	expr           string       // as passed to Compile
 | |
| 	prog           *syntax.Prog // compiled program
 | |
| 	onepass        *onePassProg // onepass program or nil
 | |
| 	numSubexp      int
 | |
| 	maxBitStateLen int
 | |
| 	subexpNames    []string
 | |
| 	prefix         string         // required prefix in unanchored matches
 | |
| 	prefixBytes    []byte         // prefix, as a []byte
 | |
| 	prefixRune     rune           // first rune in prefix
 | |
| 	prefixEnd      uint32         // pc for last rune in prefix
 | |
| 	mpool          int            // pool for machines
 | |
| 	matchcap       int            // size of recorded match lengths
 | |
| 	prefixComplete bool           // prefix is the entire regexp
 | |
| 	cond           syntax.EmptyOp // empty-width conditions required at start of match
 | |
| 	minInputLen    int            // minimum length of the input in bytes
 | |
| 
 | |
| 	// This field can be modified by the Longest method,
 | |
| 	// but it is otherwise read-only.
 | |
| 	longest bool // whether regexp prefers leftmost-longest match
 | |
| }
 | |
| 
 | |
| // String returns the source text used to compile the regular expression.
 | |
| func (re *Regexp) String() string {
 | |
| 	return re.expr
 | |
| }
 | |
| 
 | |
| // Copy returns a new [Regexp] object copied from re.
 | |
| // Calling [Regexp.Longest] on one copy does not affect another.
 | |
| //
 | |
| // Deprecated: In earlier releases, when using a [Regexp] in multiple goroutines,
 | |
| // giving each goroutine its own copy helped to avoid lock contention.
 | |
| // As of Go 1.12, using Copy is no longer necessary to avoid lock contention.
 | |
| // Copy may still be appropriate if the reason for its use is to make
 | |
| // two copies with different [Regexp.Longest] settings.
 | |
| func (re *Regexp) Copy() *Regexp {
 | |
| 	re2 := *re
 | |
| 	return &re2
 | |
| }
 | |
| 
 | |
| // Compile parses a regular expression and returns, if successful,
 | |
| // a [Regexp] object that can be used to match against text.
 | |
| //
 | |
| // When matching against text, the regexp returns a match that
 | |
| // begins as early as possible in the input (leftmost), and among those
 | |
| // it chooses the one that a backtracking search would have found first.
 | |
| // This so-called leftmost-first matching is the same semantics
 | |
| // that Perl, Python, and other implementations use, although this
 | |
| // package implements it without the expense of backtracking.
 | |
| // For POSIX leftmost-longest matching, see [CompilePOSIX].
 | |
| func Compile(expr string) (*Regexp, error) {
 | |
| 	return compile(expr, syntax.Perl, false)
 | |
| }
 | |
| 
 | |
| // CompilePOSIX is like [Compile] but restricts the regular expression
 | |
| // to POSIX ERE (egrep) syntax and changes the match semantics to
 | |
| // leftmost-longest.
 | |
| //
 | |
| // That is, when matching against text, the regexp returns a match that
 | |
| // begins as early as possible in the input (leftmost), and among those
 | |
| // it chooses a match that is as long as possible.
 | |
| // This so-called leftmost-longest matching is the same semantics
 | |
| // that early regular expression implementations used and that POSIX
 | |
| // specifies.
 | |
| //
 | |
| // However, there can be multiple leftmost-longest matches, with different
 | |
| // submatch choices, and here this package diverges from POSIX.
 | |
| // Among the possible leftmost-longest matches, this package chooses
 | |
| // the one that a backtracking search would have found first, while POSIX
 | |
| // specifies that the match be chosen to maximize the length of the first
 | |
| // subexpression, then the second, and so on from left to right.
 | |
| // The POSIX rule is computationally prohibitive and not even well-defined.
 | |
| // See https://swtch.com/~rsc/regexp/regexp2.html#posix for details.
 | |
| func CompilePOSIX(expr string) (*Regexp, error) {
 | |
| 	return compile(expr, syntax.POSIX, true)
 | |
| }
 | |
| 
 | |
| // Longest makes future searches prefer the leftmost-longest match.
 | |
| // That is, when matching against text, the regexp returns a match that
 | |
| // begins as early as possible in the input (leftmost), and among those
 | |
| // it chooses a match that is as long as possible.
 | |
| // This method modifies the [Regexp] and may not be called concurrently
 | |
| // with any other methods.
 | |
| func (re *Regexp) Longest() {
 | |
| 	re.longest = true
 | |
| }
 | |
| 
 | |
| func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
 | |
| 	re, err := syntax.Parse(expr, mode)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	maxCap := re.MaxCap()
 | |
| 	capNames := re.CapNames()
 | |
| 
 | |
| 	re = re.Simplify()
 | |
| 	prog, err := syntax.Compile(re)
 | |
| 	if err != nil {
 | |
| 		return nil, err
 | |
| 	}
 | |
| 	matchcap := prog.NumCap
 | |
| 	if matchcap < 2 {
 | |
| 		matchcap = 2
 | |
| 	}
 | |
| 	regexp := &Regexp{
 | |
| 		expr:        expr,
 | |
| 		prog:        prog,
 | |
| 		onepass:     compileOnePass(prog),
 | |
| 		numSubexp:   maxCap,
 | |
| 		subexpNames: capNames,
 | |
| 		cond:        prog.StartCond(),
 | |
| 		longest:     longest,
 | |
| 		matchcap:    matchcap,
 | |
| 		minInputLen: minInputLen(re),
 | |
| 	}
 | |
| 	if regexp.onepass == nil {
 | |
| 		regexp.prefix, regexp.prefixComplete = prog.Prefix()
 | |
| 		regexp.maxBitStateLen = maxBitStateLen(prog)
 | |
| 	} else {
 | |
| 		regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog)
 | |
| 	}
 | |
| 	if regexp.prefix != "" {
 | |
| 		// TODO(rsc): Remove this allocation by adding
 | |
| 		// IndexString to package bytes.
 | |
| 		regexp.prefixBytes = []byte(regexp.prefix)
 | |
| 		regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
 | |
| 	}
 | |
| 
 | |
| 	n := len(prog.Inst)
 | |
| 	i := 0
 | |
| 	for matchSize[i] != 0 && matchSize[i] < n {
 | |
| 		i++
 | |
| 	}
 | |
| 	regexp.mpool = i
 | |
| 
 | |
| 	return regexp, nil
 | |
| }
 | |
| 
 | |
| // Pools of *machine for use during (*Regexp).doExecute,
 | |
| // split up by the size of the execution queues.
 | |
| // matchPool[i] machines have queue size matchSize[i].
 | |
| // On a 64-bit system each queue entry is 16 bytes,
 | |
| // so matchPool[0] has 16*2*128 = 4kB queues, etc.
 | |
| // The final matchPool is a catch-all for very large queues.
 | |
| var (
 | |
| 	matchSize = [...]int{128, 512, 2048, 16384, 0}
 | |
| 	matchPool [len(matchSize)]sync.Pool
 | |
| )
 | |
| 
 | |
| // get returns a machine to use for matching re.
 | |
| // It uses the re's machine cache if possible, to avoid
 | |
| // unnecessary allocation.
 | |
| func (re *Regexp) get() *machine {
 | |
| 	m, ok := matchPool[re.mpool].Get().(*machine)
 | |
| 	if !ok {
 | |
| 		m = new(machine)
 | |
| 	}
 | |
| 	m.re = re
 | |
| 	m.p = re.prog
 | |
| 	if cap(m.matchcap) < re.matchcap {
 | |
| 		m.matchcap = make([]int, re.matchcap)
 | |
| 		for _, t := range m.pool {
 | |
| 			t.cap = make([]int, re.matchcap)
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Allocate queues if needed.
 | |
| 	// Or reallocate, for "large" match pool.
 | |
| 	n := matchSize[re.mpool]
 | |
| 	if n == 0 { // large pool
 | |
| 		n = len(re.prog.Inst)
 | |
| 	}
 | |
| 	if len(m.q0.sparse) < n {
 | |
| 		m.q0 = queue{make([]uint32, n), make([]entry, 0, n)}
 | |
| 		m.q1 = queue{make([]uint32, n), make([]entry, 0, n)}
 | |
| 	}
 | |
| 	return m
 | |
| }
 | |
| 
 | |
| // put returns a machine to the correct machine pool.
 | |
| func (re *Regexp) put(m *machine) {
 | |
| 	m.re = nil
 | |
| 	m.p = nil
 | |
| 	m.inputs.clear()
 | |
| 	matchPool[re.mpool].Put(m)
 | |
| }
 | |
| 
 | |
| // minInputLen walks the regexp to find the minimum length of any matchable input.
 | |
| func minInputLen(re *syntax.Regexp) int {
 | |
| 	switch re.Op {
 | |
| 	default:
 | |
| 		return 0
 | |
| 	case syntax.OpAnyChar, syntax.OpAnyCharNotNL, syntax.OpCharClass:
 | |
| 		return 1
 | |
| 	case syntax.OpLiteral:
 | |
| 		l := 0
 | |
| 		for _, r := range re.Rune {
 | |
| 			if r == utf8.RuneError {
 | |
| 				l++
 | |
| 			} else {
 | |
| 				l += utf8.RuneLen(r)
 | |
| 			}
 | |
| 		}
 | |
| 		return l
 | |
| 	case syntax.OpCapture, syntax.OpPlus:
 | |
| 		return minInputLen(re.Sub[0])
 | |
| 	case syntax.OpRepeat:
 | |
| 		return re.Min * minInputLen(re.Sub[0])
 | |
| 	case syntax.OpConcat:
 | |
| 		l := 0
 | |
| 		for _, sub := range re.Sub {
 | |
| 			l += minInputLen(sub)
 | |
| 		}
 | |
| 		return l
 | |
| 	case syntax.OpAlternate:
 | |
| 		l := minInputLen(re.Sub[0])
 | |
| 		var lnext int
 | |
| 		for _, sub := range re.Sub[1:] {
 | |
| 			lnext = minInputLen(sub)
 | |
| 			if lnext < l {
 | |
| 				l = lnext
 | |
| 			}
 | |
| 		}
 | |
| 		return l
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // MustCompile is like [Compile] but panics if the expression cannot be parsed.
 | |
| // It simplifies safe initialization of global variables holding compiled regular
 | |
| // expressions.
 | |
| func MustCompile(str string) *Regexp {
 | |
| 	regexp, err := Compile(str)
 | |
| 	if err != nil {
 | |
| 		panic(`regexp: Compile(` + quote(str) + `): ` + err.Error())
 | |
| 	}
 | |
| 	return regexp
 | |
| }
 | |
| 
 | |
| // MustCompilePOSIX is like [CompilePOSIX] but panics if the expression cannot be parsed.
 | |
| // It simplifies safe initialization of global variables holding compiled regular
 | |
| // expressions.
 | |
| func MustCompilePOSIX(str string) *Regexp {
 | |
| 	regexp, err := CompilePOSIX(str)
 | |
| 	if err != nil {
 | |
| 		panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + err.Error())
 | |
| 	}
 | |
| 	return regexp
 | |
| }
 | |
| 
 | |
| func quote(s string) string {
 | |
| 	if strconv.CanBackquote(s) {
 | |
| 		return "`" + s + "`"
 | |
| 	}
 | |
| 	return strconv.Quote(s)
 | |
| }
 | |
| 
 | |
| // NumSubexp returns the number of parenthesized subexpressions in this [Regexp].
 | |
| func (re *Regexp) NumSubexp() int {
 | |
| 	return re.numSubexp
 | |
| }
 | |
| 
 | |
| // SubexpNames returns the names of the parenthesized subexpressions
 | |
| // in this [Regexp]. The name for the first sub-expression is names[1],
 | |
| // so that if m is a match slice, the name for m[i] is SubexpNames()[i].
 | |
| // Since the Regexp as a whole cannot be named, names[0] is always
 | |
| // the empty string. The slice should not be modified.
 | |
| func (re *Regexp) SubexpNames() []string {
 | |
| 	return re.subexpNames
 | |
| }
 | |
| 
 | |
| // SubexpIndex returns the index of the first subexpression with the given name,
 | |
| // or -1 if there is no subexpression with that name.
 | |
| //
 | |
| // Note that multiple subexpressions can be written using the same name, as in
 | |
| // (?P<bob>a+)(?P<bob>b+), which declares two subexpressions named "bob".
 | |
| // In this case, SubexpIndex returns the index of the leftmost such subexpression
 | |
| // in the regular expression.
 | |
| func (re *Regexp) SubexpIndex(name string) int {
 | |
| 	if name != "" {
 | |
| 		for i, s := range re.subexpNames {
 | |
| 			if name == s {
 | |
| 				return i
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return -1
 | |
| }
 | |
| 
 | |
| const endOfText rune = -1
 | |
| 
 | |
| // input abstracts different representations of the input text. It provides
 | |
| // one-character lookahead.
 | |
| type input interface {
 | |
| 	step(pos int) (r rune, width int) // advance one rune
 | |
| 	canCheckPrefix() bool             // can we look ahead without losing info?
 | |
| 	hasPrefix(re *Regexp) bool
 | |
| 	index(re *Regexp, pos int) int
 | |
| 	context(pos int) lazyFlag
 | |
| }
 | |
| 
 | |
| // inputString scans a string.
 | |
| type inputString struct {
 | |
| 	str string
 | |
| }
 | |
| 
 | |
| func (i *inputString) step(pos int) (rune, int) {
 | |
| 	if pos < len(i.str) {
 | |
| 		c := i.str[pos]
 | |
| 		if c < utf8.RuneSelf {
 | |
| 			return rune(c), 1
 | |
| 		}
 | |
| 		return utf8.DecodeRuneInString(i.str[pos:])
 | |
| 	}
 | |
| 	return endOfText, 0
 | |
| }
 | |
| 
 | |
| func (i *inputString) canCheckPrefix() bool {
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| func (i *inputString) hasPrefix(re *Regexp) bool {
 | |
| 	return strings.HasPrefix(i.str, re.prefix)
 | |
| }
 | |
| 
 | |
| func (i *inputString) index(re *Regexp, pos int) int {
 | |
| 	return strings.Index(i.str[pos:], re.prefix)
 | |
| }
 | |
| 
 | |
| func (i *inputString) context(pos int) lazyFlag {
 | |
| 	r1, r2 := endOfText, endOfText
 | |
| 	// 0 < pos && pos <= len(i.str)
 | |
| 	if uint(pos-1) < uint(len(i.str)) {
 | |
| 		r1 = rune(i.str[pos-1])
 | |
| 		if r1 >= utf8.RuneSelf {
 | |
| 			r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
 | |
| 		}
 | |
| 	}
 | |
| 	// 0 <= pos && pos < len(i.str)
 | |
| 	if uint(pos) < uint(len(i.str)) {
 | |
| 		r2 = rune(i.str[pos])
 | |
| 		if r2 >= utf8.RuneSelf {
 | |
| 			r2, _ = utf8.DecodeRuneInString(i.str[pos:])
 | |
| 		}
 | |
| 	}
 | |
| 	return newLazyFlag(r1, r2)
 | |
| }
 | |
| 
 | |
| // inputBytes scans a byte slice.
 | |
| type inputBytes struct {
 | |
| 	str []byte
 | |
| }
 | |
| 
 | |
| func (i *inputBytes) step(pos int) (rune, int) {
 | |
| 	if pos < len(i.str) {
 | |
| 		c := i.str[pos]
 | |
| 		if c < utf8.RuneSelf {
 | |
| 			return rune(c), 1
 | |
| 		}
 | |
| 		return utf8.DecodeRune(i.str[pos:])
 | |
| 	}
 | |
| 	return endOfText, 0
 | |
| }
 | |
| 
 | |
| func (i *inputBytes) canCheckPrefix() bool {
 | |
| 	return true
 | |
| }
 | |
| 
 | |
| func (i *inputBytes) hasPrefix(re *Regexp) bool {
 | |
| 	return bytes.HasPrefix(i.str, re.prefixBytes)
 | |
| }
 | |
| 
 | |
| func (i *inputBytes) index(re *Regexp, pos int) int {
 | |
| 	return bytes.Index(i.str[pos:], re.prefixBytes)
 | |
| }
 | |
| 
 | |
| func (i *inputBytes) context(pos int) lazyFlag {
 | |
| 	r1, r2 := endOfText, endOfText
 | |
| 	// 0 < pos && pos <= len(i.str)
 | |
| 	if uint(pos-1) < uint(len(i.str)) {
 | |
| 		r1 = rune(i.str[pos-1])
 | |
| 		if r1 >= utf8.RuneSelf {
 | |
| 			r1, _ = utf8.DecodeLastRune(i.str[:pos])
 | |
| 		}
 | |
| 	}
 | |
| 	// 0 <= pos && pos < len(i.str)
 | |
| 	if uint(pos) < uint(len(i.str)) {
 | |
| 		r2 = rune(i.str[pos])
 | |
| 		if r2 >= utf8.RuneSelf {
 | |
| 			r2, _ = utf8.DecodeRune(i.str[pos:])
 | |
| 		}
 | |
| 	}
 | |
| 	return newLazyFlag(r1, r2)
 | |
| }
 | |
| 
 | |
| // inputReader scans a RuneReader.
 | |
| type inputReader struct {
 | |
| 	r     io.RuneReader
 | |
| 	atEOT bool
 | |
| 	pos   int
 | |
| }
 | |
| 
 | |
| func (i *inputReader) step(pos int) (rune, int) {
 | |
| 	if !i.atEOT && pos != i.pos {
 | |
| 		return endOfText, 0
 | |
| 
 | |
| 	}
 | |
| 	r, w, err := i.r.ReadRune()
 | |
| 	if err != nil {
 | |
| 		i.atEOT = true
 | |
| 		return endOfText, 0
 | |
| 	}
 | |
| 	i.pos += w
 | |
| 	return r, w
 | |
| }
 | |
| 
 | |
| func (i *inputReader) canCheckPrefix() bool {
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| func (i *inputReader) hasPrefix(re *Regexp) bool {
 | |
| 	return false
 | |
| }
 | |
| 
 | |
| func (i *inputReader) index(re *Regexp, pos int) int {
 | |
| 	return -1
 | |
| }
 | |
| 
 | |
| func (i *inputReader) context(pos int) lazyFlag {
 | |
| 	return 0 // not used
 | |
| }
 | |
| 
 | |
| // LiteralPrefix returns a literal string that must begin any match
 | |
| // of the regular expression re. It returns the boolean true if the
 | |
| // literal string comprises the entire regular expression.
 | |
| func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
 | |
| 	return re.prefix, re.prefixComplete
 | |
| }
 | |
| 
 | |
| // MatchReader reports whether the text returned by the [io.RuneReader]
 | |
| // contains any match of the regular expression re.
 | |
| func (re *Regexp) MatchReader(r io.RuneReader) bool {
 | |
| 	return re.doMatch(r, nil, "")
 | |
| }
 | |
| 
 | |
| // MatchString reports whether the string s
 | |
| // contains any match of the regular expression re.
 | |
| func (re *Regexp) MatchString(s string) bool {
 | |
| 	return re.doMatch(nil, nil, s)
 | |
| }
 | |
| 
 | |
| // Match reports whether the byte slice b
 | |
| // contains any match of the regular expression re.
 | |
| func (re *Regexp) Match(b []byte) bool {
 | |
| 	return re.doMatch(nil, b, "")
 | |
| }
 | |
| 
 | |
| // MatchReader reports whether the text returned by the RuneReader
 | |
| // contains any match of the regular expression pattern.
 | |
| // More complicated queries need to use [Compile] and the full [Regexp] interface.
 | |
| func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
 | |
| 	re, err := Compile(pattern)
 | |
| 	if err != nil {
 | |
| 		return false, err
 | |
| 	}
 | |
| 	return re.MatchReader(r), nil
 | |
| }
 | |
| 
 | |
| // MatchString reports whether the string s
 | |
| // contains any match of the regular expression pattern.
 | |
| // More complicated queries need to use [Compile] and the full [Regexp] interface.
 | |
| func MatchString(pattern string, s string) (matched bool, err error) {
 | |
| 	re, err := Compile(pattern)
 | |
| 	if err != nil {
 | |
| 		return false, err
 | |
| 	}
 | |
| 	return re.MatchString(s), nil
 | |
| }
 | |
| 
 | |
| // Match reports whether the byte slice b
 | |
| // contains any match of the regular expression pattern.
 | |
| // More complicated queries need to use [Compile] and the full [Regexp] interface.
 | |
| func Match(pattern string, b []byte) (matched bool, err error) {
 | |
| 	re, err := Compile(pattern)
 | |
| 	if err != nil {
 | |
| 		return false, err
 | |
| 	}
 | |
| 	return re.Match(b), nil
 | |
| }
 | |
| 
 | |
| // ReplaceAllString returns a copy of src, replacing matches of the [Regexp]
 | |
| // with the replacement string repl.
 | |
| // Inside repl, $ signs are interpreted as in [Regexp.Expand].
 | |
| func (re *Regexp) ReplaceAllString(src, repl string) string {
 | |
| 	n := 2
 | |
| 	if strings.Contains(repl, "$") {
 | |
| 		n = 2 * (re.numSubexp + 1)
 | |
| 	}
 | |
| 	b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
 | |
| 		return re.expand(dst, repl, nil, src, match)
 | |
| 	})
 | |
| 	return string(b)
 | |
| }
 | |
| 
 | |
| // ReplaceAllLiteralString returns a copy of src, replacing matches of the [Regexp]
 | |
| // with the replacement string repl. The replacement repl is substituted directly,
 | |
| // without using [Regexp.Expand].
 | |
| func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
 | |
| 	return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
 | |
| 		return append(dst, repl...)
 | |
| 	}))
 | |
| }
 | |
| 
 | |
| // ReplaceAllStringFunc returns a copy of src in which all matches of the
 | |
| // [Regexp] have been replaced by the return value of function repl applied
 | |
| // to the matched substring. The replacement returned by repl is substituted
 | |
| // directly, without using [Regexp.Expand].
 | |
| func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
 | |
| 	b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
 | |
| 		return append(dst, repl(src[match[0]:match[1]])...)
 | |
| 	})
 | |
| 	return string(b)
 | |
| }
 | |
| 
 | |
| func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
 | |
| 	lastMatchEnd := 0 // end position of the most recent match
 | |
| 	searchPos := 0    // position where we next look for a match
 | |
| 	var buf []byte
 | |
| 	var endPos int
 | |
| 	if bsrc != nil {
 | |
| 		endPos = len(bsrc)
 | |
| 	} else {
 | |
| 		endPos = len(src)
 | |
| 	}
 | |
| 	if nmatch > re.prog.NumCap {
 | |
| 		nmatch = re.prog.NumCap
 | |
| 	}
 | |
| 
 | |
| 	var dstCap [2]int
 | |
| 	for searchPos <= endPos {
 | |
| 		a := re.doExecute(nil, bsrc, src, searchPos, nmatch, dstCap[:0])
 | |
| 		if len(a) == 0 {
 | |
| 			break // no more matches
 | |
| 		}
 | |
| 
 | |
| 		// Copy the unmatched characters before this match.
 | |
| 		if bsrc != nil {
 | |
| 			buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
 | |
| 		} else {
 | |
| 			buf = append(buf, src[lastMatchEnd:a[0]]...)
 | |
| 		}
 | |
| 
 | |
| 		// Now insert a copy of the replacement string, but not for a
 | |
| 		// match of the empty string immediately after another match.
 | |
| 		// (Otherwise, we get double replacement for patterns that
 | |
| 		// match both empty and nonempty strings.)
 | |
| 		if a[1] > lastMatchEnd || a[0] == 0 {
 | |
| 			buf = repl(buf, a)
 | |
| 		}
 | |
| 		lastMatchEnd = a[1]
 | |
| 
 | |
| 		// Advance past this match; always advance at least one character.
 | |
| 		var width int
 | |
| 		if bsrc != nil {
 | |
| 			_, width = utf8.DecodeRune(bsrc[searchPos:])
 | |
| 		} else {
 | |
| 			_, width = utf8.DecodeRuneInString(src[searchPos:])
 | |
| 		}
 | |
| 		if searchPos+width > a[1] {
 | |
| 			searchPos += width
 | |
| 		} else if searchPos+1 > a[1] {
 | |
| 			// This clause is only needed at the end of the input
 | |
| 			// string. In that case, DecodeRuneInString returns width=0.
 | |
| 			searchPos++
 | |
| 		} else {
 | |
| 			searchPos = a[1]
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	// Copy the unmatched characters after the last match.
 | |
| 	if bsrc != nil {
 | |
| 		buf = append(buf, bsrc[lastMatchEnd:]...)
 | |
| 	} else {
 | |
| 		buf = append(buf, src[lastMatchEnd:]...)
 | |
| 	}
 | |
| 
 | |
| 	return buf
 | |
| }
 | |
| 
 | |
| // ReplaceAll returns a copy of src, replacing matches of the [Regexp]
 | |
| // with the replacement text repl.
 | |
| // Inside repl, $ signs are interpreted as in [Regexp.Expand].
 | |
| func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
 | |
| 	n := 2
 | |
| 	if bytes.IndexByte(repl, '$') >= 0 {
 | |
| 		n = 2 * (re.numSubexp + 1)
 | |
| 	}
 | |
| 	srepl := ""
 | |
| 	b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
 | |
| 		if len(srepl) != len(repl) {
 | |
| 			srepl = string(repl)
 | |
| 		}
 | |
| 		return re.expand(dst, srepl, src, "", match)
 | |
| 	})
 | |
| 	return b
 | |
| }
 | |
| 
 | |
| // ReplaceAllLiteral returns a copy of src, replacing matches of the [Regexp]
 | |
| // with the replacement bytes repl. The replacement repl is substituted directly,
 | |
| // without using [Regexp.Expand].
 | |
| func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
 | |
| 	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
 | |
| 		return append(dst, repl...)
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // ReplaceAllFunc returns a copy of src in which all matches of the
 | |
| // [Regexp] have been replaced by the return value of function repl applied
 | |
| // to the matched byte slice. The replacement returned by repl is substituted
 | |
| // directly, without using [Regexp.Expand].
 | |
| func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
 | |
| 	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
 | |
| 		return append(dst, repl(src[match[0]:match[1]])...)
 | |
| 	})
 | |
| }
 | |
| 
 | |
| // Bitmap used by func special to check whether a character needs to be escaped.
 | |
| var specialBytes [16]byte
 | |
| 
 | |
| // special reports whether byte b needs to be escaped by QuoteMeta.
 | |
| func special(b byte) bool {
 | |
| 	return b < utf8.RuneSelf && specialBytes[b%16]&(1<<(b/16)) != 0
 | |
| }
 | |
| 
 | |
| func init() {
 | |
| 	for _, b := range []byte(`\.+*?()|[]{}^$`) {
 | |
| 		specialBytes[b%16] |= 1 << (b / 16)
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // QuoteMeta returns a string that escapes all regular expression metacharacters
 | |
| // inside the argument text; the returned string is a regular expression matching
 | |
| // the literal text.
 | |
| func QuoteMeta(s string) string {
 | |
| 	// A byte loop is correct because all metacharacters are ASCII.
 | |
| 	var i int
 | |
| 	for i = 0; i < len(s); i++ {
 | |
| 		if special(s[i]) {
 | |
| 			break
 | |
| 		}
 | |
| 	}
 | |
| 	// No meta characters found, so return original string.
 | |
| 	if i >= len(s) {
 | |
| 		return s
 | |
| 	}
 | |
| 
 | |
| 	b := make([]byte, 2*len(s)-i)
 | |
| 	copy(b, s[:i])
 | |
| 	j := i
 | |
| 	for ; i < len(s); i++ {
 | |
| 		if special(s[i]) {
 | |
| 			b[j] = '\\'
 | |
| 			j++
 | |
| 		}
 | |
| 		b[j] = s[i]
 | |
| 		j++
 | |
| 	}
 | |
| 	return string(b[:j])
 | |
| }
 | |
| 
 | |
| // The number of capture values in the program may correspond
 | |
| // to fewer capturing expressions than are in the regexp.
 | |
| // For example, "(a){0}" turns into an empty program, so the
 | |
| // maximum capture in the program is 0 but we need to return
 | |
| // an expression for \1.  Pad appends -1s to the slice a as needed.
 | |
| func (re *Regexp) pad(a []int) []int {
 | |
| 	if a == nil {
 | |
| 		// No match.
 | |
| 		return nil
 | |
| 	}
 | |
| 	n := (1 + re.numSubexp) * 2
 | |
| 	for len(a) < n {
 | |
| 		a = append(a, -1)
 | |
| 	}
 | |
| 	return a
 | |
| }
 | |
| 
 | |
| // allMatches calls deliver at most n times
 | |
| // with the location of successive matches in the input text.
 | |
| // The input text is b if non-nil, otherwise s.
 | |
| func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
 | |
| 	var end int
 | |
| 	if b == nil {
 | |
| 		end = len(s)
 | |
| 	} else {
 | |
| 		end = len(b)
 | |
| 	}
 | |
| 
 | |
| 	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
 | |
| 		matches := re.doExecute(nil, b, s, pos, re.prog.NumCap, nil)
 | |
| 		if len(matches) == 0 {
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		accept := true
 | |
| 		if matches[1] == pos {
 | |
| 			// We've found an empty match.
 | |
| 			if matches[0] == prevMatchEnd {
 | |
| 				// We don't allow an empty match right
 | |
| 				// after a previous match, so ignore it.
 | |
| 				accept = false
 | |
| 			}
 | |
| 			var width int
 | |
| 			if b == nil {
 | |
| 				is := inputString{str: s}
 | |
| 				_, width = is.step(pos)
 | |
| 			} else {
 | |
| 				ib := inputBytes{str: b}
 | |
| 				_, width = ib.step(pos)
 | |
| 			}
 | |
| 			if width > 0 {
 | |
| 				pos += width
 | |
| 			} else {
 | |
| 				pos = end + 1
 | |
| 			}
 | |
| 		} else {
 | |
| 			pos = matches[1]
 | |
| 		}
 | |
| 		prevMatchEnd = matches[1]
 | |
| 
 | |
| 		if accept {
 | |
| 			deliver(re.pad(matches))
 | |
| 			i++
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| // Find returns a slice holding the text of the leftmost match in b of the regular expression.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) Find(b []byte) []byte {
 | |
| 	var dstCap [2]int
 | |
| 	a := re.doExecute(nil, b, "", 0, 2, dstCap[:0])
 | |
| 	if a == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return b[a[0]:a[1]:a[1]]
 | |
| }
 | |
| 
 | |
| // FindIndex returns a two-element slice of integers defining the location of
 | |
| // the leftmost match in b of the regular expression. The match itself is at
 | |
| // b[loc[0]:loc[1]].
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindIndex(b []byte) (loc []int) {
 | |
| 	a := re.doExecute(nil, b, "", 0, 2, nil)
 | |
| 	if a == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return a[0:2]
 | |
| }
 | |
| 
 | |
| // FindString returns a string holding the text of the leftmost match in s of the regular
 | |
| // expression. If there is no match, the return value is an empty string,
 | |
| // but it will also be empty if the regular expression successfully matches
 | |
| // an empty string. Use [Regexp.FindStringIndex] or [Regexp.FindStringSubmatch] if it is
 | |
| // necessary to distinguish these cases.
 | |
| func (re *Regexp) FindString(s string) string {
 | |
| 	var dstCap [2]int
 | |
| 	a := re.doExecute(nil, nil, s, 0, 2, dstCap[:0])
 | |
| 	if a == nil {
 | |
| 		return ""
 | |
| 	}
 | |
| 	return s[a[0]:a[1]]
 | |
| }
 | |
| 
 | |
| // FindStringIndex returns a two-element slice of integers defining the
 | |
| // location of the leftmost match in s of the regular expression. The match
 | |
| // itself is at s[loc[0]:loc[1]].
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindStringIndex(s string) (loc []int) {
 | |
| 	a := re.doExecute(nil, nil, s, 0, 2, nil)
 | |
| 	if a == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return a[0:2]
 | |
| }
 | |
| 
 | |
| // FindReaderIndex returns a two-element slice of integers defining the
 | |
| // location of the leftmost match of the regular expression in text read from
 | |
| // the [io.RuneReader]. The match text was found in the input stream at
 | |
| // byte offset loc[0] through loc[1]-1.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
 | |
| 	a := re.doExecute(r, nil, "", 0, 2, nil)
 | |
| 	if a == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	return a[0:2]
 | |
| }
 | |
| 
 | |
| // FindSubmatch returns a slice of slices holding the text of the leftmost
 | |
| // match of the regular expression in b and the matches, if any, of its
 | |
| // subexpressions, as defined by the 'Submatch' descriptions in the package
 | |
| // comment.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindSubmatch(b []byte) [][]byte {
 | |
| 	var dstCap [4]int
 | |
| 	a := re.doExecute(nil, b, "", 0, re.prog.NumCap, dstCap[:0])
 | |
| 	if a == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	ret := make([][]byte, 1+re.numSubexp)
 | |
| 	for i := range ret {
 | |
| 		if 2*i < len(a) && a[2*i] >= 0 {
 | |
| 			ret[i] = b[a[2*i]:a[2*i+1]:a[2*i+1]]
 | |
| 		}
 | |
| 	}
 | |
| 	return ret
 | |
| }
 | |
| 
 | |
| // Expand appends template to dst and returns the result; during the
 | |
| // append, Expand replaces variables in the template with corresponding
 | |
| // matches drawn from src. The match slice should have been returned by
 | |
| // [Regexp.FindSubmatchIndex].
 | |
| //
 | |
| // In the template, a variable is denoted by a substring of the form
 | |
| // $name or ${name}, where name is a non-empty sequence of letters,
 | |
| // digits, and underscores. A purely numeric name like $1 refers to
 | |
| // the submatch with the corresponding index; other names refer to
 | |
| // capturing parentheses named with the (?P<name>...) syntax. A
 | |
| // reference to an out of range or unmatched index or a name that is not
 | |
| // present in the regular expression is replaced with an empty slice.
 | |
| //
 | |
| // In the $name form, name is taken to be as long as possible: $1x is
 | |
| // equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
 | |
| //
 | |
| // To insert a literal $ in the output, use $$ in the template.
 | |
| func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
 | |
| 	return re.expand(dst, string(template), src, "", match)
 | |
| }
 | |
| 
 | |
| // ExpandString is like [Regexp.Expand] but the template and source are strings.
 | |
| // It appends to and returns a byte slice in order to give the calling
 | |
| // code control over allocation.
 | |
| func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
 | |
| 	return re.expand(dst, template, nil, src, match)
 | |
| }
 | |
| 
 | |
| func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
 | |
| 	for len(template) > 0 {
 | |
| 		before, after, ok := strings.Cut(template, "$")
 | |
| 		if !ok {
 | |
| 			break
 | |
| 		}
 | |
| 		dst = append(dst, before...)
 | |
| 		template = after
 | |
| 		if template != "" && template[0] == '$' {
 | |
| 			// Treat $$ as $.
 | |
| 			dst = append(dst, '$')
 | |
| 			template = template[1:]
 | |
| 			continue
 | |
| 		}
 | |
| 		name, num, rest, ok := extract(template)
 | |
| 		if !ok {
 | |
| 			// Malformed; treat $ as raw text.
 | |
| 			dst = append(dst, '$')
 | |
| 			continue
 | |
| 		}
 | |
| 		template = rest
 | |
| 		if num >= 0 {
 | |
| 			if 2*num+1 < len(match) && match[2*num] >= 0 {
 | |
| 				if bsrc != nil {
 | |
| 					dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
 | |
| 				} else {
 | |
| 					dst = append(dst, src[match[2*num]:match[2*num+1]]...)
 | |
| 				}
 | |
| 			}
 | |
| 		} else {
 | |
| 			for i, namei := range re.subexpNames {
 | |
| 				if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
 | |
| 					if bsrc != nil {
 | |
| 						dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
 | |
| 					} else {
 | |
| 						dst = append(dst, src[match[2*i]:match[2*i+1]]...)
 | |
| 					}
 | |
| 					break
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	dst = append(dst, template...)
 | |
| 	return dst
 | |
| }
 | |
| 
 | |
| // extract returns the name from a leading "name" or "{name}" in str.
 | |
| // (The $ has already been removed by the caller.)
 | |
| // If it is a number, extract returns num set to that number; otherwise num = -1.
 | |
| func extract(str string) (name string, num int, rest string, ok bool) {
 | |
| 	if str == "" {
 | |
| 		return
 | |
| 	}
 | |
| 	brace := false
 | |
| 	if str[0] == '{' {
 | |
| 		brace = true
 | |
| 		str = str[1:]
 | |
| 	}
 | |
| 	i := 0
 | |
| 	for i < len(str) {
 | |
| 		rune, size := utf8.DecodeRuneInString(str[i:])
 | |
| 		if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
 | |
| 			break
 | |
| 		}
 | |
| 		i += size
 | |
| 	}
 | |
| 	if i == 0 {
 | |
| 		// empty name is not okay
 | |
| 		return
 | |
| 	}
 | |
| 	name = str[:i]
 | |
| 	if brace {
 | |
| 		if i >= len(str) || str[i] != '}' {
 | |
| 			// missing closing brace
 | |
| 			return
 | |
| 		}
 | |
| 		i++
 | |
| 	}
 | |
| 
 | |
| 	// Parse number.
 | |
| 	num = 0
 | |
| 	for i := 0; i < len(name); i++ {
 | |
| 		if name[i] < '0' || '9' < name[i] || num >= 1e8 {
 | |
| 			num = -1
 | |
| 			break
 | |
| 		}
 | |
| 		num = num*10 + int(name[i]) - '0'
 | |
| 	}
 | |
| 	// Disallow leading zeros.
 | |
| 	if name[0] == '0' && len(name) > 1 {
 | |
| 		num = -1
 | |
| 	}
 | |
| 
 | |
| 	rest = str[i:]
 | |
| 	ok = true
 | |
| 	return
 | |
| }
 | |
| 
 | |
| // FindSubmatchIndex returns a slice holding the index pairs identifying the
 | |
| // leftmost match of the regular expression in b and the matches, if any, of
 | |
| // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
 | |
| // in the package comment.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindSubmatchIndex(b []byte) []int {
 | |
| 	return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap, nil))
 | |
| }
 | |
| 
 | |
| // FindStringSubmatch returns a slice of strings holding the text of the
 | |
| // leftmost match of the regular expression in s and the matches, if any, of
 | |
| // its subexpressions, as defined by the 'Submatch' description in the
 | |
| // package comment.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindStringSubmatch(s string) []string {
 | |
| 	var dstCap [4]int
 | |
| 	a := re.doExecute(nil, nil, s, 0, re.prog.NumCap, dstCap[:0])
 | |
| 	if a == nil {
 | |
| 		return nil
 | |
| 	}
 | |
| 	ret := make([]string, 1+re.numSubexp)
 | |
| 	for i := range ret {
 | |
| 		if 2*i < len(a) && a[2*i] >= 0 {
 | |
| 			ret[i] = s[a[2*i]:a[2*i+1]]
 | |
| 		}
 | |
| 	}
 | |
| 	return ret
 | |
| }
 | |
| 
 | |
| // FindStringSubmatchIndex returns a slice holding the index pairs
 | |
| // identifying the leftmost match of the regular expression in s and the
 | |
| // matches, if any, of its subexpressions, as defined by the 'Submatch' and
 | |
| // 'Index' descriptions in the package comment.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindStringSubmatchIndex(s string) []int {
 | |
| 	return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap, nil))
 | |
| }
 | |
| 
 | |
| // FindReaderSubmatchIndex returns a slice holding the index pairs
 | |
| // identifying the leftmost match of the regular expression of text read by
 | |
| // the [io.RuneReader], and the matches, if any, of its subexpressions, as defined
 | |
| // by the 'Submatch' and 'Index' descriptions in the package comment. A
 | |
| // return value of nil indicates no match.
 | |
| func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
 | |
| 	return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap, nil))
 | |
| }
 | |
| 
 | |
| const startSize = 10 // The size at which to start a slice in the 'All' routines.
 | |
| 
 | |
| // FindAll is the 'All' version of [Regexp.Find]; it returns a slice of all successive
 | |
| // matches of the expression, as defined by the 'All' description in the
 | |
| // package comment.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindAll(b []byte, n int) [][]byte {
 | |
| 	if n < 0 {
 | |
| 		n = len(b) + 1
 | |
| 	}
 | |
| 	var result [][]byte
 | |
| 	re.allMatches("", b, n, func(match []int) {
 | |
| 		if result == nil {
 | |
| 			result = make([][]byte, 0, startSize)
 | |
| 		}
 | |
| 		result = append(result, b[match[0]:match[1]:match[1]])
 | |
| 	})
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // FindAllIndex is the 'All' version of [Regexp.FindIndex]; it returns a slice of all
 | |
| // successive matches of the expression, as defined by the 'All' description
 | |
| // in the package comment.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
 | |
| 	if n < 0 {
 | |
| 		n = len(b) + 1
 | |
| 	}
 | |
| 	var result [][]int
 | |
| 	re.allMatches("", b, n, func(match []int) {
 | |
| 		if result == nil {
 | |
| 			result = make([][]int, 0, startSize)
 | |
| 		}
 | |
| 		result = append(result, match[0:2])
 | |
| 	})
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // FindAllString is the 'All' version of [Regexp.FindString]; it returns a slice of all
 | |
| // successive matches of the expression, as defined by the 'All' description
 | |
| // in the package comment.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindAllString(s string, n int) []string {
 | |
| 	if n < 0 {
 | |
| 		n = len(s) + 1
 | |
| 	}
 | |
| 	var result []string
 | |
| 	re.allMatches(s, nil, n, func(match []int) {
 | |
| 		if result == nil {
 | |
| 			result = make([]string, 0, startSize)
 | |
| 		}
 | |
| 		result = append(result, s[match[0]:match[1]])
 | |
| 	})
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // FindAllStringIndex is the 'All' version of [Regexp.FindStringIndex]; it returns a
 | |
| // slice of all successive matches of the expression, as defined by the 'All'
 | |
| // description in the package comment.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
 | |
| 	if n < 0 {
 | |
| 		n = len(s) + 1
 | |
| 	}
 | |
| 	var result [][]int
 | |
| 	re.allMatches(s, nil, n, func(match []int) {
 | |
| 		if result == nil {
 | |
| 			result = make([][]int, 0, startSize)
 | |
| 		}
 | |
| 		result = append(result, match[0:2])
 | |
| 	})
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // FindAllSubmatch is the 'All' version of [Regexp.FindSubmatch]; it returns a slice
 | |
| // of all successive matches of the expression, as defined by the 'All'
 | |
| // description in the package comment.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
 | |
| 	if n < 0 {
 | |
| 		n = len(b) + 1
 | |
| 	}
 | |
| 	var result [][][]byte
 | |
| 	re.allMatches("", b, n, func(match []int) {
 | |
| 		if result == nil {
 | |
| 			result = make([][][]byte, 0, startSize)
 | |
| 		}
 | |
| 		slice := make([][]byte, len(match)/2)
 | |
| 		for j := range slice {
 | |
| 			if match[2*j] >= 0 {
 | |
| 				slice[j] = b[match[2*j]:match[2*j+1]:match[2*j+1]]
 | |
| 			}
 | |
| 		}
 | |
| 		result = append(result, slice)
 | |
| 	})
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // FindAllSubmatchIndex is the 'All' version of [Regexp.FindSubmatchIndex]; it returns
 | |
| // a slice of all successive matches of the expression, as defined by the
 | |
| // 'All' description in the package comment.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
 | |
| 	if n < 0 {
 | |
| 		n = len(b) + 1
 | |
| 	}
 | |
| 	var result [][]int
 | |
| 	re.allMatches("", b, n, func(match []int) {
 | |
| 		if result == nil {
 | |
| 			result = make([][]int, 0, startSize)
 | |
| 		}
 | |
| 		result = append(result, match)
 | |
| 	})
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // FindAllStringSubmatch is the 'All' version of [Regexp.FindStringSubmatch]; it
 | |
| // returns a slice of all successive matches of the expression, as defined by
 | |
| // the 'All' description in the package comment.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
 | |
| 	if n < 0 {
 | |
| 		n = len(s) + 1
 | |
| 	}
 | |
| 	var result [][]string
 | |
| 	re.allMatches(s, nil, n, func(match []int) {
 | |
| 		if result == nil {
 | |
| 			result = make([][]string, 0, startSize)
 | |
| 		}
 | |
| 		slice := make([]string, len(match)/2)
 | |
| 		for j := range slice {
 | |
| 			if match[2*j] >= 0 {
 | |
| 				slice[j] = s[match[2*j]:match[2*j+1]]
 | |
| 			}
 | |
| 		}
 | |
| 		result = append(result, slice)
 | |
| 	})
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // FindAllStringSubmatchIndex is the 'All' version of
 | |
| // [Regexp.FindStringSubmatchIndex]; it returns a slice of all successive matches of
 | |
| // the expression, as defined by the 'All' description in the package
 | |
| // comment.
 | |
| // A return value of nil indicates no match.
 | |
| func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
 | |
| 	if n < 0 {
 | |
| 		n = len(s) + 1
 | |
| 	}
 | |
| 	var result [][]int
 | |
| 	re.allMatches(s, nil, n, func(match []int) {
 | |
| 		if result == nil {
 | |
| 			result = make([][]int, 0, startSize)
 | |
| 		}
 | |
| 		result = append(result, match)
 | |
| 	})
 | |
| 	return result
 | |
| }
 | |
| 
 | |
| // Split slices s into substrings separated by the expression and returns a slice of
 | |
| // the substrings between those expression matches.
 | |
| //
 | |
| // The slice returned by this method consists of all the substrings of s
 | |
| // not contained in the slice returned by [Regexp.FindAllString]. When called on an expression
 | |
| // that contains no metacharacters, it is equivalent to [strings.SplitN].
 | |
| //
 | |
| // Example:
 | |
| //
 | |
| //	s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5)
 | |
| //	// s: ["", "b", "b", "c", "cadaaae"]
 | |
| //
 | |
| // The count determines the number of substrings to return:
 | |
| //
 | |
| //	n > 0: at most n substrings; the last substring will be the unsplit remainder.
 | |
| //	n == 0: the result is nil (zero substrings)
 | |
| //	n < 0: all substrings
 | |
| func (re *Regexp) Split(s string, n int) []string {
 | |
| 
 | |
| 	if n == 0 {
 | |
| 		return nil
 | |
| 	}
 | |
| 
 | |
| 	if len(re.expr) > 0 && len(s) == 0 {
 | |
| 		return []string{""}
 | |
| 	}
 | |
| 
 | |
| 	matches := re.FindAllStringIndex(s, n)
 | |
| 	strings := make([]string, 0, len(matches))
 | |
| 
 | |
| 	beg := 0
 | |
| 	end := 0
 | |
| 	for _, match := range matches {
 | |
| 		if n > 0 && len(strings) >= n-1 {
 | |
| 			break
 | |
| 		}
 | |
| 
 | |
| 		end = match[0]
 | |
| 		if match[1] != 0 {
 | |
| 			strings = append(strings, s[beg:end])
 | |
| 		}
 | |
| 		beg = match[1]
 | |
| 	}
 | |
| 
 | |
| 	if end != len(s) {
 | |
| 		strings = append(strings, s[beg:])
 | |
| 	}
 | |
| 
 | |
| 	return strings
 | |
| }
 | |
| 
 | |
| // MarshalText implements [encoding.TextMarshaler]. The output
 | |
| // matches that of calling the [Regexp.String] method.
 | |
| //
 | |
| // Note that the output is lossy in some cases: This method does not indicate
 | |
| // POSIX regular expressions (i.e. those compiled by calling [CompilePOSIX]), or
 | |
| // those for which the [Regexp.Longest] method has been called.
 | |
| func (re *Regexp) MarshalText() ([]byte, error) {
 | |
| 	return []byte(re.String()), nil
 | |
| }
 | |
| 
 | |
| // UnmarshalText implements [encoding.TextUnmarshaler] by calling
 | |
| // [Compile] on the encoded value.
 | |
| func (re *Regexp) UnmarshalText(text []byte) error {
 | |
| 	newRE, err := Compile(string(text))
 | |
| 	if err != nil {
 | |
| 		return err
 | |
| 	}
 | |
| 	*re = *newRE
 | |
| 	return nil
 | |
| }
 |